Practice Test | Kullabs.com
0%
• ### Find column vector (overrightarrow{MN}) of the M(2, 5) and N(4, 8)

(egin{pmatrix} 3\ 3end{pmatrix})
(egin{pmatrix} 2\ 2end{pmatrix})
(egin{pmatrix} 2\ 3end{pmatrix})
(egin{pmatrix} 3\ 3end{pmatrix})
• ### Find the magnitute (overrightarrow{XY}) = (egin{pmatrix} 0 \ 5 end{pmatrix})

(sqrt{5}) units
(sqrt{50}) units
(sqrt{25}) units
(sqrt{52}) units

2 units.
4 units.
6 units.
5 units.

6 units
4 units
8 units
5 units

12 units
25 units
4 units
6 units
• ### Find the magnitude of: (overrightarrow{AB}) = (egin{pmatrix} 5\3end{pmatrix})

12(sqrt{34}) units
(sqrt{12}) units
(sqrt{25}) units
(sqrt{34}) units
• ### Find the magnitude of: (overrightarrow{XY}) = (egin{pmatrix} -4\-6end{pmatrix})

(sqrt[2]{52}) units
(sqrt{52}) units
2(sqrt[3]{52}) units
12(sqrt{52}) units
• ### Find the magnitude of: (overrightarrow{MN}) = (egin{pmatrix} -4\5end{pmatrix})

15(sqrt{41}) units
(sqrt{41}) units
(sqrt[2]{6}) units
(sqrt{12}) units
• ### Find column vector (overrightarrow{MN}) if,  M(2, 5) and N(4, 8)

(egin{pmatrix} 3\3end{pmatrix})
(egin{pmatrix} 3\2end{pmatrix})
(egin{pmatrix} 2\3end{pmatrix})
(egin{pmatrix} 2\2end{pmatrix})
• ### Find column vector (overrightarrow{MN}) if,  M(-3, 4) and N(4, -6)

(egin{pmatrix} 12\3end{pmatrix})
(egin{pmatrix} -2\13end{pmatrix})
(egin{pmatrix} 2\3end{pmatrix})
(egin{pmatrix} 7\-10end{pmatrix})
• ### If  (overrightarrow{a}) = (egin{pmatrix} 4\6end{pmatrix}) and   (overrightarrow{b}) = (egin{pmatrix}3\2end{pmatrix}), find (overrightarrow{a})+ (overrightarrow{b}).

(egin{pmatrix} 12\12end{pmatrix})
(egin{pmatrix} 7\8end{pmatrix})
(egin{pmatrix} 1\4end{pmatrix})
(egin{pmatrix} 4\6end{pmatrix})
• ### If  (overrightarrow{a}) = (egin{pmatrix} 8\10end{pmatrix}) and   (overrightarrow{b}) = (egin{pmatrix}-2\-3end{pmatrix}), find (overrightarrow{a})-(overrightarrow{b})

(egin{pmatrix} 6\7end{pmatrix})
(egin{pmatrix} -6\-7end{pmatrix})
(egin{pmatrix} 10\13end{pmatrix})
(egin{pmatrix} 8\10end{pmatrix})
• ### If  (overrightarrow{a}) = (egin{pmatrix} 8\10end{pmatrix}) and   (overrightarrow{b}) = (egin{pmatrix}5\6end{pmatrix}), find magnitude of(overrightarrow{a})-(overrightarrow{b})

(sqrt{5})
5
(egin{pmatrix} 3\4end{pmatrix})
(frac{1}{5})
• ### If  (overrightarrow{a}) = (egin{pmatrix} 4\5end{pmatrix}) and   (overrightarrow{b}) = (egin{pmatrix}4\1end{pmatrix}), find magnitude of (overrightarrow{a})-(overrightarrow{b})

1
(egin{pmatrix} 01end{pmatrix}
(egin{pmatrix} 4\5end{pmatrix}
(egin{pmatrix} 0\4end{pmatrix}

9, 12
6, 9
5, 8
4, 5