 Practice Test | Kullabs.com
0%

(0 , 0)
(0 , 10)
(10 , 20)
(10 , 20)

(2 , 0)
(0 , 2)
(-2 , 0)
(0)

(2 , -1)
(-1 , -1)
(-1 , -2)
(3 , -1)

24 units
5 units
16 units
3 units

98 units
24 units
44 units
96 units

x2 - y2 = 10
x2 + y2 = 9
x2 + 9 = y2
x2 - y2 = 9
• ### Find the equation of the circle with centre (2 , -1) and radius 3 units .

x2 + y2 + 2x + 4y = 4
x2 + y2 - 4x + 2y = 4
x2 - y2 + 4x - 2y = -4
x2 + y2 + 4x + 2y = -4
• ### Find the equation of a circle having centre (1 , -2) and the radius 2 (sqrt{5}) units .

x2 - y2 + 2x + 4y = 0
x2 + y2 - 2x + 4y = 0
x2 - y2 + 2x - 4y = 0
x2 - y2 - 4x + 2y = 0

3 units
2 units
4 units
16 units
• ### Find the equation of the circle having centre (3 , 6) and touching the x-axis.

x2 - y2 -6x + 11y + 9 = 0
x2 - y2 + 6x - 12 + 9y = 0
x + y - 6x - 12y + 9 = 0
x2 + y2 -6x - 12y + 9 = 0
• ### Given points are  the end of the circle . Find the equation of the circle.A(5 , 6) and B(3 , 4)

x2 + y2 + 8x + 10y - 39 = 0
x2 + y2 - 8x - 10y + 39 = 0
x2 - y2 + 8x + 10y - 39 = 0
x2 + y2 + 8x - 10y + 0 = 39
• ### Given points are  the end of the circle . Find the equation of the circle.(1 , 2) and (3 , 6)

x2 - y2 + 4x + 8y + 0  = 15
x2 + y2 - 4x - 8y + 15  = 0
x2 - y2 - 4x - 8y - 15  = 0
x2 - y2 + 4x + 8y - 15  = 0
• ### Given points are  the end of the circle . Find the equation of the circle.( -1 , 0) and (7 , 4).

x2 + y2 -6x + 4y + 0 = 7
x2 - y2 - 6x -4y - 7 = 0
x2 - y2 -6x - 6y - 7 = 0
x2 + y2 -6x -4y - 7 = 0
• ### Find the coordinates of centre and radius of the circle. x2 + y2 - 2x - 6y +  1 = 0

1  ,(4 , 3) units
(1 , 3)  , 3 units
4 , (1 , 3) units
(3 , 1) , 4 units
• ### Find the coordinates of centre and radius of the circle. 2x - 6y - x2 - y2 = 1

(1 , 3) , 3 units
(1 , -3) , 3 units
(-1 , -3) , 1 units
(3 , 1)  units