0%

13
15
14
12

1
2
-1
3

2
1
-1
-2

3
5
2
4
• ### If (overrightarrow a) and (overrightarrow b) are perpendicular to each other, find the value of m:(overrightarrow a) = -4(overrightarrow i) + 7(overrightarrow j) and  (overrightarrow b) = 14(overrightarrow i) - 3m(overrightarrow j)

(-frac{8}{3})
6
8
2

450
400
300
600

10
12
13
11
• ### The position vectors of points A and B of a line are (egin{pmatrix}1\3\ end{pmatrix}) and (egin{pmatrix}3\5\ end{pmatrix}) respectively.Find the position vector of mid point M of AB.

(egin{pmatrix}2\5\ end{pmatrix})
(egin{pmatrix}2\4\ end{pmatrix})
(egin{pmatrix}1\4\ end{pmatrix})
(egin{pmatrix}5\4\ end{pmatrix})
• ### If the position vectors of the points A and B are 3(overrightarrow i) + 4(overrightarrow j) and 5(overrightarrow i) - 2(overrightarrow j) respectively. Find the position vector of the mid-point M of AB.

2(overrightarrow i) + 3(overrightarrow j)
5(overrightarrow i) + (overrightarrow j)
4(overrightarrow i) + (overrightarrow j)
3(overrightarrow i) + (overrightarrow j)
• ### The position vector of P and Q are 2(overrightarrow i) + 7(overrightarrow j) and 4(overrightarrow i) - 3(overrightarrow j). Find the position vector of a point which divides PQ externally in the ratio of 2:3.

25(overrightarrow j) - (overrightarrow i)
23(overrightarrow j) - 2(overrightarrow i)
29(overrightarrow j) - (overrightarrow i)
27(overrightarrow j) - 2(overrightarrow i)
• ### If the points X(-1, -1), Y(5, 1) and Z(2, 6) are the vertices of triangle XYZ, find the position vector of its centriod.

(egin{pmatrix}1\2\ end{pmatrix})
(egin{pmatrix}2\3\ end{pmatrix})
(egin{pmatrix}2\2\ end{pmatrix})
(egin{pmatrix}2\1\ end{pmatrix})
• ### Find the position vector of a point in the x-axis which divides the line joining the points (2, -1) and (8, 2) in the ratio 1:2.

(egin{pmatrix}4\2\ end{pmatrix})
(egin{pmatrix}2\2\ end{pmatrix})
(egin{pmatrix}4\0\ end{pmatrix})
(egin{pmatrix}2\4\ end{pmatrix})

14
13
12
15

-2
-5
-3
-4

zero
five
two
eight