Notes on Regression Contd., Important problems Correlation and Regression | Grade 12 > Mathematics > Dispersion, correlation and regression | KULLABS.COM

Regression Contd., Important problems Correlation and Regression

Notes, Exercises, Videos, Tests and Things to Remember on Regression Contd., Important problems Correlation and Regression

Please scroll down to get to the study materials.

Registration open for Special Scholarships

  • Note
  • Things to remember

Regression Equations and regression coefficients:

Regression lines expressed in term of algebraic relations are known as the regression equations. Since there are two regression lines, So there are two regression equations.

  • The regression equation of y on x expresses the variation of y for a change in the value of x.
  • The regression equation of x on y expresses the variation of x for a change in the value of y.

Regression equation of y on x

Let the regression equation of y on x be

$$y=a+bx$$

$$\rightarrow\;\Sigma\;y=na+b\Sigma\;x$$

$$\rightarrow\;\frac{\Sigma}{n}\;y=a+\frac{b\Sigma\;x}{n}$$

$$\rightarrow\;\overline{y}=a+b\overline{x}$$

Subtracting two equations:

$$y-\overline{y}=b-(x-\overline{x}$$

This equation is the equation of line of regression of y on x. This equation shows that the line of regression of y on x passes through \(\;(\overline{x},\overline{y})\;\;\overline{x}\;and\overline{y}\) being the arithmetic averages of x and y series, b is known as the regression coefficient of y on x. In order to differentiate it from regression coefficient of x on y, b is written as b­yx­ where

$$b_{yx}=\frac{n\Sigma\;xy-\Sigma\;x\Sigma\;y}{n\Sigma\;x^2-(\Sigma\;x)^2}=r\frac{\sigma_y}{\sigma_x}$$

Similarly the regression equation of x on y is,

$$y-\overline{x}=b_{xy}(y-\overline{y}$$

Where the line passes through \(\;(\overline{x},\overline{y})\) the regression coefficient of x on y denoted by bxy ­is given by

$$b_{xy}=\frac{n\Sigma\;xy-\Sigma\;x\Sigma\;y}{n\Sigma\;y^2-(\Sigma\;y)^2}=r\frac{\sigma_x}{\sigma_y}$$

­The regression equations can easily be obtained when the deviations of the items are taken from the assumed mean.

If u=x-a and v=y-b i.e. if the deviations of the items of x series and y-series be taken from the assumed means a and b respectively then,

$$\overline{x}=a+\frac{\Sigma\;u}{n},\;\;\;\;\overline{y}=b+\frac{\Sigma\;v}{n}$$

$$b_{yx}=\frac{n\Sigma\;uv-\Sigma\;u\Sigma\;v}{n\Sigma\;u^2-(\Sigma\;u)^2}$$

$$b_{xy}=\frac{n\Sigma\;uv-\Sigma\;u\Sigma\;v}{n\Sigma\;v^2-(\Sigma\;v)^2}$$

Relation between r and b:

$$r=\sqrt{b_{yx}b_{xy}}$$

Examples

Example 1: (Correlation)

Calculate the Karl Pearson’s coefficient of correlation from the following data using product moment formula.

X

12

9

8

10

11

13

7

Y

14

8

6

9

11

12

3

Solution:

Computation of correlation coefficient

X

Y

$$x=X-\overline{x}$$

$$y=Y-\overline{Y}$$

x2

y2

xy

12

9

8

10

11

13

7

14

8

6

9

11

12

3

2

-1

-2

=

1

3

-3

5

1

-3

0

2

3

6

4

1

4

0

1

9

9

25

1

9

0

4

9

36

10

1

6

0

1

9

18

$$\Sigma\;X=70$$

$$\Sigma\;Y=63$$

$$\Sigma\;x^2=28$$

$$\Sigma\;y^2=84$$

$$\Sigma\;xy=46$$

$$\overline{X}=\frac{\Sigma\;X}{n}=\frac{70}{7}=10\;\;\;\overline{Y}=\frac{\Sigma\;Y}{n}=\frac{63}{7}=9$$

$$r=\frac{\Sigma\;xy}{\sqrt{\Sigma\;x^2}\sqrt{\Sigma\;y^2}}=\frac{46}{\sqrt{28}\sqrt{84}}$$

$$\frac{46}{\sqrt{2352}}\;=\frac{46}{48.497}$$

$$=0.95$$

Example 2: (Regression)

Obtain the regression equations of X on Y and Y on X taking origin as 2 and 200 for X and Y respectively.

X

1

2

3

4

5

Y

166

184

142

180

338

Solution:

X

Y

u=X-A=X-2

v=Y-B=Y-200

uv

u2

v2

1

2

3

4

5

166

184

142

180

338

-1

0

1

2

3

-34

-16

-58

-20

138

34

0

-58

-40

414

1

0

1

4

9

1156

256

3364

400

19044

Total

5

10

350

15

24220

$$The\;regression\;equation\;of\;X\;on\;Y\;is\;X-\overline{X}\;=b_{xy}(Y-\overline{Y}$$

$$\overline{x}=a+\frac{\Sigma\;u}{n}=2+\frac{5}{5}=3$$

$$\overline{y}=b+\frac{\Sigma\;v}{n}=200=\frac{10}{5}=202$$

$$b_{xy}=\frac{n\Sigma\;uv-\Sigma\;u\Sigma\;v}{n\Sigma\;v^2-(\Sigma\;v)^2}$$

$$=\;\frac{5(350)-5(10)}{5(24220)-(10)^2}=\frac{1700}{121000}=0.014$$

The required equation is,

$$X-3=0.014(Y-202)$$

$$\rightarrow\;X=0.014Y+0.172$$

Again,

$$The\;regression\;equation\;of\;Y\;on\;X\;is\;Y-\overline{Y}\;=b_{yx}(X-\overline{X}$$

$$\overline{x}=3$$

$$\overline{y}=202$$

$$b_{yx}=\frac{n\Sigma\;uv-\Sigma\;u\Sigma\;v}{n\Sigma\;u^2-(\Sigma\;u)^2}$$

$$=\;\frac{5(350)-5(10)}{5(15)-(5)^2}=\frac{1700}{50}=34$$

The required equation is,

$$Y-202=34(X-3)$$

$$\rightarrow\;Y=34Y+100$$

Example 3: (Regression)

For a certain bivariate data

X

Y

Mean

10

18

Std

2.5

2.0

And the coefficient of correlation between X and Y is 0.8. Determine the following:

  • The regression of Y on X and the regression of X on Y
  • Estimated value of Y for X = 15

Solution:

We know,

$$b_{xy}=r\frac{\sigma_x}{\sigma_y}=0.8\frac{2.5}{2.0}=1$$

$$b_{yx}=r\frac{\sigma_y}{\sigma_x}=0.8\frac{2}{2.5}=0.64$$

the regression equation of Y on X is,

$$y-\overline{y}=b_{yx}(x-\overline{x}$$

$$Y-10=1(X-18)$$

the regression equation of X on Y is,

$$X-\overline{X}=b_{xy}(Y-\overline{Y}$$

$$X-18=0.64(Y-10)$$

Thus for X=15, Y=(15-18)+10=7

Example 4 : (Correlation)

Calculate the coefficient of correlation from the following data of price and demand:

Price (Rs)

14

16

19

22

24

30

Demand(kg)

24

22

20

24

23

26

Solution:

Computation of correlation coefficients:

Price(x)

u=x-19

u2

Demand(y)

v=y-23

v2

uv

14

16

19

22

24

30

-5

-3

0

3

5

11

25

9

0

9

25

121

24

22

20

24

23

26

1

-1

-3

1

0

3

1

1

9

1

0

9

-5

-3

0

3

0

33

$$\Sigma\;u=11$$

$$\Sigma\;u^2=189$$

$$\Sigma\;v=1$$

$$\Sigma\;v^2=21$$

$$\Sigma\;uv=34$$

$$r=\frac{n\Sigma\;uv-\Sigma\;u\Sigma\;v}{\sqrt{n\Sigma\;u^2-(\Sigma\;u)^2}\sqrt{n\Sigma\;v^2-(\Sigma\;v)^2}}$$

$$=\frac{6\times\;34-11\times\;1}{\sqrt{6\times\;189-11^2}\sqrt{6\times\;21-1^2}}$$

$$=\frac{204-11}{\sqrt{1134-221}\sqrt{126-1}}$$

$$=\frac{193}{\sqrt{1013\times\;125}}$$

$$=\frac{193}{\sqrt{126625}}$$

$$\frac{13}{355.84}$$

$$=0.542$$

Taken reference from

( Basic mathematics Grade XII and A foundation of Mathematics Volume II and Wikipedia.com )



  • the regression equation of x on y is,

    $$y-\overline{x}=b_{xy}(y-\overline{y}$$

  • If u=x-a and v=y-b i.e. if the deviations of the items of x series and y-series be taken from the assumed means a and b respectively then,

    $$\overline{x}=a+\frac{\Sigma\;u}{n},\;\;\;\;\overline{y}=b+\frac{\Sigma\;v}{n}$$

    $$b_{yx}=\frac{n\Sigma\;uv-\Sigma\;u\Sigma\;v}{n\Sigma\;u^2-(\Sigma\;u)^2}$$

    $$b_{xy}=\frac{n\Sigma\;uv-\Sigma\;u\Sigma\;v}{n\Sigma\;v^2-(\Sigma\;v)^2}$$

  • $$r=\sqrt{b_{yx}b_{xy}}$$
.

Questions and Answers

Click on the questions below to reveal the answers

0%

ASK ANY QUESTION ON Regression Contd., Important problems Correlation and Regression

No discussion on this note yet. Be first to comment on this note