Trigonometric Ratios of Some Standard Angles | kullabs.com
Notes, Exercises, Videos, Tests and Things to Remember on Trigonometric Ratios of Some Standard Angles

Please scroll down to get to the study materials.

Registration open for Special Discounts

Note on Trigonometric Ratios of Some Standard Angles

Registration open for Mr and Miss SEE
  • Note
  • Things to remember
  • Videos
  • Exercise
  • Quiz

Different angles have a different value with various trigonometric ratios. We shall consider 0°, 30°, 45° and 90° as the standard angles and we shall learn their values here. In this unit, we shall verify the values of 0°, 30°, 45° and 90° using geometrical proofs.

Trigonometrical Ratio of 45°

Let ABC be a right-angledisosceles trianglewhere \(\angle\)B = 90° and \(\angle\)A = \(\angle\)C = 45°

Also let BC = AC = \(\alpha\).

We know, in right angled \(\triangle\)ABC

h2 = p2 + b2

or, (AC)2 = (AB)2 + (BC)2

or, (AC)2 = \(\alpha\)2 + \(\alpha\)2

or, (AC)2 = 2 \(\alpha\)2

∴ AC = \(\alpha\)\(\sqrt{2}\)

Taking \(\angle\)C as the reference angle, we get,

sin 45 = \(\frac{AB}{AC}\)= \(\frac{α}{α\sqrt{2}}\) = \(\frac{1}{\sqrt{2}}\)

cos 45 = \(\frac{BC}{AC}\)= \(\frac{α}{α\sqrt{2}}\) = \(\frac{1}{\sqrt{2}}\)

tan 45 = \(\frac{AB}{BC}\)= \(\frac{α}{α}\) = 1

cosec 45 = \(\frac{AC}{AB}\)= \(\frac{α\sqrt{2}}{α}\) = \(\sqrt{2}\)

sec 45 = \(\frac{AC}{AB}\)= \(\frac{α\sqrt{2}}{α}\) =\(\sqrt{2}\)

cot 45 = \(\frac{BC}{AB}\) = \(\frac{α}{α}\) = 1

 

1

Let ABC be an equilateral triangle where\(\angle\)A = \(\angle\)B = \(\angle\)C = 60°

and AB = BC = CA = 2\(\alpha\)

Now, let's draw AD perpendicular to BC so that,

BD = DC = a and \(\angle\)BAD = \(\angle\)DAC = 30°

Now, in right angled \(\triangle\)ADC,

(AC)2 = (AD)2 + (DC)2

or, (AD)2 = (AC)2 + (DC)2

= (2α)2 - (α)2

= 4\(\alpha\)2 - \(\alpha\)2 = 3\(\alpha\)2

\(\therefore\) AD = \(\alpha\)\(\sqrt{3}\)

Now, to find the trigonometric ratio for 60°, lets take \(\angle\)C = 60° as the reference angle, we get,

sin 60° = \(\frac{AD}{AC}\) = \(\frac{\alpha\sqrt{3}}{2α}\) = \(\frac{\sqrt{3}}{2}\)

cos 60° = \(\frac{DC}{AC}\)= \(\frac{α}{2α}\) =\(\frac{1}{2}\)

tan 60° = \(\frac{AD}{DC}\)=\(\frac{\alpha\sqrt{3}}{2α}\) = \(\sqrt{3}\)

cosec 60° = \(\frac{AC}{AD}\)= \(\frac{2α}{\alpha\sqrt{3}}\) = \(\frac{2}{\sqrt{3}}\)

sec 60° = \(\frac{AC}{DC}\)= \(\frac{2α}{α}\) = 2

cot 60° = \(\frac{DC}{AD}\)= \(\frac{α}{\alpha\sqrt{3}}\) = \(\frac{1}{\sqrt{3}}\)

Now, to find out the trigonometric ratio for 30° , let's take \(\angle\)DAC = 30° as the reference angle, we get,

sin 30° =\(\frac{DC}{AC}\)= \(\frac{α}{2α}\) =\(\frac{1}{2}\)

cos 30° = \(\frac{AD}{AC}\) = \(\frac{\alpha\sqrt{3}}{2α}\) = \(\frac{\sqrt{3}}{2}\)

tan 30° =\(\frac{DC}{AD}\)= \(\frac{α}{\alpha\sqrt{3}}\) = \(\frac{1}{\sqrt{3}}\)

cosec 30° =\(\frac{AC}{DC}\)= \(\frac{2α}{α}\) = 2

sec 30° = \(\frac{AC}{AD}\)= \(\frac{2α}{\alpha\sqrt{3}}\) = \(\frac{2}{\sqrt{3}}\)

cot 30° =\(\frac{AD}{DC}\)=\(\frac{\alpha\sqrt{3}}{2α}\) = \(\sqrt{3}\)

Trigonometrical Ratio of 0°

Let ABC be a right angled triangle where \(\angle\)B = 90° and \(\angle\)C = \(\theta\).

If \(\theta\) tends to 0°

i.e \(\theta\)→0°, AC coincides with BC.

or, AC \(\approx\)BC

so, AC= BC = a (say)

Now, using pythagoras theorem

h2= p2+ b2

or, (AC)2=(AB)2+ (BC)2

or, a2 = (AB)2 + a2

or, (AB)2 = a2 - a2 = 0

\(\therefore\) AB = 0

Now, taking right angled \(\triangle\)ABC

sin 0° = \(\frac{p}{h}\) =\(\frac{AB}{AC}\) =\(\frac{0}{a}\) = 0

cos 0° =\(\frac{b}{h}\) = \(\frac{BC}{AC}\) = \(\frac{a}{a}\) = 1

tan 0° =\(\frac{p}{b}\) = \(\frac{AB}{BC}\) = \(\frac{0}{a}\) = 0

cosec 0° =\(\frac{h}{p}\) = \(\frac{AC}{AB}\) = \(\frac{a}{0}\) = \(\infty\)

sec 0° =\(\frac{h}{b}\) = \(\frac{AC}{BC}\) = \(\frac{a}{a}\) = 1

cot 0° =\(\frac{b}{p}\) = \(\frac{BC}{AB}\) = \(\frac{a}{0}\) = \(\infty\)

Trigonometric Ratio of 90°

Let ABC be a right angled triangle where \(\angle\)B = 90° and \(\angle\)C = \(\theta\) be the reference angle.

If \(\theta\) tends to 90°

i.e \(\theta\)→90°, AC coincides with BC.

or, AC \(\approx\)AB

so, AC= AB = a (say)

Now, using pythagoras theorem

h2= p2+ b2

or, (AC)2=(AB)2+ (BC)2

or, a2 = (BC)2 + a2

or, (BC)2 = a2 - a2 = 0

\(\therefore\) BC = 0

Now, taking right angled \(\triangle\)ABC

sin 90° = \(\frac{p}{h}\) =\(\frac{AB}{AC}\) =\(\frac{a}{a}\) =1

cos 90° =\(\frac{b}{h}\) = \(\frac{BC}{AC}\) = \(\frac{0}{a}\) = 0

tan 90° =\(\frac{p}{b}\) = \(\frac{AB}{BC}\) = \(\frac{a}{0}\) =\(\infty\)

cosec 90° =\(\frac{h}{p}\) = \(\frac{AC}{AB}\) = \(\frac{a}{a}\) =1

sec 90° =\(\frac{h}{b}\) = \(\frac{AC}{BC}\) = \(\frac{a}{0}\) = \(\infty\)

cot 90° =\(\frac{b}{p}\) = \(\frac{BC}{AB}\) = \(\frac{0}{a}\) =0

Complementary Angles

Two angles are Complementary when they add up to 90 degrees.

Let'a see the following example,

What is the angle added to 60° and 90°?

Let the angle be x.

Then, x + 60° = 90°

or, x = 90° - 60° = 30°

Hence, 30° and 60° when added together gives us 90°, So, 30° and 60° are called complements of each other.

The angles are said to be complementary if the sum of the angles is 90°.

Complementary Angles in Trigonometry

Let ABC be a right angledtriangle where \(\angle\)ABC = 90° and \(\angle\)ACB = \(\theta\)

Now, we know,

\(\angle\)ACB +\(\angle\)ABC +\(\angle\)BAC = 180° (sum of angles of a \(\triangle\))

or, \(\theta\) + 90° + \(\angle\)BAC = 180°

or, \(\angle\)BAC = 180° - 90° - \(\theta\) = 90° - \(\theta\)

So, \(\angle\)ACB and\(\angle\)CAB are complementary angles.

Now, taking\(\angle\)A = 90° - \(\theta\) as the reference angle, we get,

BC = perpendicular (p)

AC = hypotenuse (h)

AB = base (b)

So,

sin(90° - \(\theta\)) = \(\frac{p}{h}\) =\(\frac{BC}{AC}\) = cos\(\theta\) (For reference angle \(\theta\))

cos (90° - \(\theta\)) = \(\frac{b}{h}\) =\(\frac{AB}{AC}\) = sin\(\theta\)

tan(90° - \(\theta\)) =\(\frac{p}{h}\) =\(\frac{BC}{AB}\) = cot\(\theta\)

cot(90° - \(\theta\)) =\(\frac{b}{p}\) =\(\frac{AB}{BC}\) = tan\(\theta\)

sec(90° - \(\theta\)) =\(\frac{h}{b}\) =\(\frac{AC}{AB}\) = cosec\(\theta\)

cosec(90° - \(\theta\)) =\(\frac{h}{p}\) =\(\frac{AB}{BC}\) = sec\(\theta\)

Hence,

sin(90° - \(\theta\)) = cos\(\theta\)

cos(90° - \(\theta\)) = sin\(\theta\)

tan(90° - \(\theta\)) =cot\(\theta\)

cot(90° - \(\theta\)) =tan\(\theta\)

sec(90° - \(\theta\)) = cosec\(\theta\)

cosec(90° - \(\theta\)) =sec\(\theta\)

  • h2 = p2 + b2
  • Different angles have a different value with various trigonometric ratios. We shall consider 0°, 30°, 45° and 90° as the standard angles and we shall learn their values here. In this unit, we shall verify the values of 0°, 30°, 45° and 90° using geometrical proofs.
.

Very Short Questions

Given that A = 30°

Then, LHS = sin3A

 = sin3 × 30°

 = sin90°

 = 1

RHS = 3sinA - 4sin3A

 = 3sin30° - 4(sin30°)3

 = 3\(\frac{1}{2}\) - 4(\(\frac{1}{2}\))3

 = \(\frac{3}{2}\) - 4 \(\frac{1}{8}\)

 = \(\frac{3}{2}\) - \(\frac{1}{2}\)

 = \(\frac{2}{2}\)

 = 1

\(\therefore\) LHS = RHS verified.

Solution

LHS = cos 60

 = \(\frac{1}{2}\)

RHS = cos230° - sin230°

(\(\frac{\sqrt(3)}{2}\))2 - (\(\frac{1}{2}\))2

\(\frac{3}{4}\) - \(\frac{1}{4}\)

\(\frac{2}{4}\)

\(\frac{1}{2}\)

\(\therefore\) LHS = RHS proved.

Solution

sec2\(\frac{π}{4}\) sec2\(\frac{π}{3}\)(cosec\(\frac{π}{6}\) - cosec\(\frac{π}{2}\))

 = sec2 \(\frac{180°}{4}\) × sec2\(\frac{180°}{3}\) (cosec\(\frac{180°}{6}\) - cosec\(\frac{180°}{2}\))

 = sec245° × sec260° (cosec30° - cosec90°)

 = (\(\sqrt(2)\))2 × (2)2 (2-1)

 = 2×4×1

 = 8

0%
  • ______ angles have a different value with various trigonometric ratios. 

    Different
    Same
    Opposite
    adjacent
  • h2 = ______

    p2 + b2
    p + b
    p2 - b2
    b2 - p2
  • sin 45° = ______

    (frac{1}{sqrt 2})
    (frac{2}{1})
    (frac{sqrt{3}}{5})
    (frac{sqrt{2}}{sqrt{3}})
  • cos 45° = ______

    (frac{2}{1})
    (frac{sqrt{3}}{5})
    (frac{1}{sqrt 2})
    (frac{sqrt{2}}{sqrt{3}})
  • tan 45° = ______

    0
    (frac{1}{2})
    1
    2
  • cosec 45° = ______

    (frac{sqrt{2}}{sqrt{3}})
    (sqrt 2)
    (sqrt{3})
    (frac{1}{2})
  • sec 45° = ______

    (sqrt 2)
    (frac{sqrt{3}}{2})
    (sqrt{3})
    (frac{2}{3})
  • cot 45° = ______

    0
    1
    (frac{sqrt{3}}{2})
    (sqrt{3})
  • sin 60° = ______

    1
    (frac{sqrt {3}}{2})
    (frac{1}{2})
    (sqrt{2})
  • cos 60° = ______

    1
    (frac{3}{2})
    (frac{1}{2})
  • tan 60° = ______

    (sqrt{2})
    (frac{1}{2})
    (sqrt3)
    (frac{3}{2})
  • cosec 60° = ______

    (frac{3}{2})
    (frac{2}{sqrt {3}})
    1
    (frac{1}{2})
  • sec 60° = ______

    1
    0
    2
    3
  • cot 60° = ______

    (frac{1}{sqrt 3})
    (frac{1}{2})
    (frac{sqrt{3}}{2})
    (frac{2}{3})
  • sin 30° = ______

    (frac{2}{3})
    (frac{1}{2})
    (frac{1}{sqrt 2})
    (frac{sqrt{3}}{2})
  • sec 30° = ______

    (frac{2}{sqrt 3})
    (sqrt{3})
    (frac{1}{sqrt{3}})
    (frac{sqrt{3}}{2})
  • tan 30° = ______

    (frac{1}{sqrt 3})
    (frac{2}{sqrt{3}})
    (sqrt{2})
    (frac{1}{2})
  • cos 0° = _______

    (frac{2}{sqrt{3}})
    0
    1
    (sqrt{2})
  • cosec 0° = _______

    1
    (infty)
    2
    0
  • cot 0° = _______

    (frac{1}{2})
    0
    (infty)
    1
  • cosec 90° = _______

    0
    1
    2
    (infty)
  • tan 90° = ________

    (frac{1}{2})
    (frac{1}{sqrt{3}})
    (infty)
    (frac{2}{sqrt{3}})
  • sec 90° = ________

    (infty)
    (frac{2}{sqrt{3}})
    1
    0
  • You scored /23


    Take test again

DISCUSSIONS ABOUT THIS NOTE

You must login to reply

Forum Time Replies Report
Sramika nepal

How to remember formula?


You must login to reply