Quartile | kullabs.com
Notes, Exercises, Videos, Tests and Things to Remember on Quartile

Please scroll down to get to the study materials. ## Note on Quartile

• Note
• Things to remember
• Exercise
• Quiz

#### Quartile

A statistical term describing a division of observation based upon the values of the data is called quartile. The middle number between the lowest number and the median of the data set is first quartile (Q1), the median of the data is second quartile (Q2) and the middle value between the median and the highest value of the data set is third quartile (Q3).

The lower quartile(Q1) is a point which has 25% observation below it and 75% observations above it. The upper quartile (Q3) is a point of 75% observation below it and 25% observation above it.

Note:

The quartiles divide the set of measurements into four equal parts. Twenty-five percent of the measurements are less than the lower quartile, fifty percent of the measurements are less than the median and seventy-five percent of the measurements are less than the upper quartiles So, fifty percent of the measurements are between the lower quartile and the upper quartile. Example

Find the quartiles of the list:

10, 8, 6, 4, 12, 18, 20

Solution:

We need to put the given list in order:

4, 6, 8,1 0, 12,1 8, 20

First, we cut the list in half by finding the median.

The middle number is 10.

so, the median = 10

Now we look at the left half of the list (not including the median):

4, 6, 8 and we find its median.

Median of the left half = 6

Finally, we look at the right half of the list:

12, 18, 20 and we find its median

12, 18, 20 and we find its median. Median of the right half = 18

The quartiles are 6, 10, 18

• Lower quartile, median and upper quartile are often denoted by Q1, Q2 and Qrespectively.
• Quartile are the values that divide a list of numbers into quarters.
• Quartile is the average of two numbers.
.

### Very Short Questions

Solution:

Arranging the data in ascending order.

8, 10, 12, 16, 25, 30, 35.

N=7

Now, Position of Q1= ($$\frac{N+1}{4}$$)th item.

= ($$\frac{7+1}{4}$$)th item.

= 2th item.

In given data 2th item is 10.

Therefore, Q1 =10.

Solution:

Arranging, the data in ascending order.

10, 12, 16, 18, 20, 24, 28, 30, 40.

N=9

Now, Position of Q1 = ($$\frac{N+1}{4}$$)th item.

= ($$\frac{9+1}{4}$$)th item.

= ($$\frac{10}{4}$$)th item

= 2.5th item.

Then, 2.5th item lies in 2nd and 3rd item.

so, Q1Median = $$\frac{12+16}{2}$$

= $$\frac{28}{2}$$

Therefore, Q1= 14.

Solution:

Arranging the data in ascending order.

Now, 10, 12, 14, 16, 17, 20, 23.

N=7

Q1 = ($$\frac{N+1}{4}$$)th item.

= ($$\frac{7+1}{4}$$)th item

= 2th item.

2th item lies in 12.

Therefore, Q1 = 12.

Solution:

Arranging the data in ascending order.

9, 15, 21, 27, 33, 39, 45.

N=7

Now, Q3 =3($$\frac{N+1}{4}$$)th item.

= 3($$\frac{7+1}{4}$$)th item.

= 3$$\times$$2th item

= 6th item.

In given data 6th item is 39.

Therefore, Q3 = 39.

Solution:

Arranging the data in ascending order.

14, 18, 22, 26, 30, 34, 38.

N= 7

Now, Q3 = 3($$\frac{N+1}{4}$$)th item.

= 3($$\frac{7+1}{4}$$)th item

= 3$$\times$$2

= 6th item.

In the given data 6th item is 34.

Therefore, Q3= 34.

Solution:

Arranging the data in ascending order.

20, 30, 50, 60, 70, 80, 90.

N= 7

Now, Q3 = 3($$\frac{N+1}{4}$$)th item.

= 3($$\frac{7+1}{4}$$)th item

= 3$$\times$$2

= 6th item.

In given data 6th item is 80.

Therefore, Q3 = 80.

Solution:

Arranging the data in ascending order.

27, 29, 18, 25, 32, 21, 26.

N= 7

Now, Q1= ($$\frac{N+1}{4}$$)th item.

=( $$\frac{7+1}{4}$$)th item

= $$\frac{8}{4}$$th item.

= 2th item.

Therefore, 2th item is 29.

Solution:

Arranging the data in ascending order.

18, 21, 25, 26, 27, 29, 32

N= 7

Now, Q1= ($$\frac{N+1}{4}$$)th item.

=( $$\frac{7+1}{4}$$)th item

= $$\frac{8}{4}$$th item.

= 2th item.

Therefore, 2th item is 21.

Solution:

Arranging the data in ascending order.

28, 32, 34, 45, 54, 60, 67,

N=7

Now, Q3 = 3($$\frac{N+1}{4}$$)th item.

= 3($$\frac{7+1}{4}$$)th item.

= 3$$\times$$2

= 6th item.

In the given data 6th item is 60.

Therefore, Q3 = 60.

Solution:

Arranging the data in ascending order.

4, 6, 8, 10, 12, 18, 20.

N=7

Now, Q1 = ($$\frac{N+1}{4}$$)th item.

= ($$\frac{7+1}{4}$$)thitem.

= $$\frac{8}{4}$$th item.

= 2nditem.

In the given data, 2nd item is 6.

Therefore, Q1 = 6.

Solution:

Here,

 Years(x) Number of Students(f) c.f 8 3 3 10 5 3+5=8 12 7 8+7=15 14 8 15+8=23 16 3 23+3=26 18 1 26+1=27 Total N= 27

Here, N=27

Now, Q3 = 3($$\frac{N+1}{4}$$)th item.

= 3($$\frac{27+1}{4}$$)th item.

= 3$$\times$$7

= 21stitem.

In the given data 21item lies in 14 years.stitem lies in 14 years.

Therefore, Q3 = 14

0%

7
5
6
8

2
3
7
4

10
14
12
20

14
13
12
15,

32
21
27
29

46
55
70
75

17
10
16
22

56
50
52
61

10
18
6
8

10
28
30
24

22.5
25
20
15

12
13
10
14

12
18
20
17

23
25
33
19

33
18
28
15