Measurement of Angles

Angles

Angles are the shape formed by two lines or rays which are diverging from a common point or the vertex.

Here, AB is the initial line and AC is a revolving line. Here, AC starts from AB, which revolves in the anticlockwise (opposite) direction, then the angle ABC is called positive angle.

If AC starts from AB and revolve round A, it is clockwise (positive) direction, then the angle ABC is called negative angle.

Measurement of Angles

There are three systems which are commonly used for the measurement of angles and they are listed below:-

  • Sexagesimal system or English system (Degree system)
  • Centesimal system or French system (Grade system)
  • Radian system or Circular measure

(NOTE: The Right angle is taken as the standard angle in each of these systems.)

.

Sexagesimal system or English system
It is a system where the unit of measurement of an angle is degree. In this system, the right angle is divided into 90 equal parts and each part is called a degree. It is a base with 60 which uses the concept of degrees, minutes and seconds for measuring angles where,
1 right angle = 90° (90 degrees)
1° = 60' (60 sexagesimal minutes)
1' = 60" (60 sexagesimal seconds)

Centesimal system or French system

.

It is a system where the unit of measurement of an angle is grade. In this system where the unit of measurement of an angle is grade. In this system, a right angle is divided into two equal parts and each part is known as a grade.It uses the concept of grade, minute and seconds where,
1 right angle = 100g (100 grades)
1 = 100' (100 centesimal minutes)
1' = 100" (100 centesimal seconds)

Radian system or Circular measure

.


Radian is the plane angle subtended by a circular arc as the length of the arc divided by the radius of the arc. In this figure O is the centre of a circle and OA is the radius. Let's take point B on the circumference making OA = arc AB and join OB. The angle AOB hence formed and called1 radian. In this measure, 1 right angle = (\(\frac{π}{2}\) )c

.
Relation between different systems of measurement


Relation between Sexagesimal and Centesimal system: -
As we know that,
1 right angle = 90°
1 right angle = 100g

So, 90° = 100g
or, 1° = (\(\frac{100}{90}\))g
= (\(\frac{10}{9}\))g
so, x° = (\(\frac{10}{9}\)×x)°
Again
100g = 90°
or, 1g = (\(\frac{90}{100}\))°
or, 1g= (\(\frac{9}{10}\))°
So, xg = (\(\frac{9}{10}\)×x)°

.

Relation between Sexagesimal and Radian system
As we know that,
180° =πc
or, x° = (\(\frac{π}{180}\)
Similarly,
1c = (\(\frac{180}{π}\))°
So, xc = (\(\frac{180}{π}\)×x)°

.

Relation between Centesimal and Radian system
We have,
200g= πc
or, xg = (\(\frac{π×x}{200}\))c
Again
πc= 200g
or, 1c = (\(\frac{200}{π}\))c
So, (\(\frac{200×x}{π}\))c

.

Polygon

Polygon is a closed plane figure having three or more than three line segments. Triangles, quadrilateral, nonagon, octagon etc. are the examples of a polygon. A polygon having all sides equal in length is called a regular polygon. A regular polygon has the same measures of interior angles.
In regular polygons of sides n, each interior angle is θ = \(\frac{(n-2) × 180°}{n}\)
Similarly,
The exterior angle is a side of a regular polygon where an angle between any side of a shape and a line extended from the next side.
Exterior angle of polygon (Φ) = \(\frac{360°}{n}\)
Some types of polygon are discussed below: -

Polygons No. of sides
Triangle 3
Quadrilateral 4
Pentagon 5
Hexagon 6
Heptagon 7
Octagon 8
Nonagon 9
Decagon 10

  • Angles are the shape formed by two lines or rays which are diverging from a common point or the vertex.
  • In the Sexagesimal system, the right angle is divided into 90 equal parts and each part is called a degree.
  • In this system, a right angle is divided into two equal parts and each part is known as a grade.
  • Radian is the plane angle subtended by a circular arc as the length of the arc divided by the radius of the arc.

 

0%
  • What is the result, when we convert 27° 30' into grade?

    ((frac{245}{4}))g
    ((frac{274}{6}))g
    ((frac{275}{9}))g
    ((frac{246}{2}))g
  • What is the result, when we convert 42° 60' into degree?

    39.28°
    35.46°
    38.34°
    34.57°
  • What is the result, when we convert 50g 49' 38" into centesimal second?

    ;i:1;s:7:
    503333

    504938
  • What is result, when we convert 50g 87' 50" into sexagesimal measure

    54.6363g
    54.638g
    50.875g
    51.534g
  • What is the result, when we convert 72° into garde?

    80g
    88g
    78g
    56g
  • What is the result, when we convert 60into degree?

    54°
    67°
    26°
    35°
  • What is the result, when we convert 60° into radian measure?

    (frac{π^c}{7})
    (frac{π^c}{5})
    (frac{π^c}{3})
    (frac{π^c}{9})
  • What is the result, when we convert 75g into radian measure?

    (frac{3π^c}{8})
    (frac{2π^c}{4})
    (frac{7π^c}{8})
    (frac{8π^c}{3})
  • What is the, result, when we convert (frac{2π^c}{5}) into degree?

    93°
    43°
    53°
    72°
  • What is result, when we convert (frac{4π^c}{5}) into grade?

    150g
    160g
    106g
    170g
  • What is the result, when we convert 30° 30' 30" into sexagesimal second?

    ;i:1;s:7:
    109830
    163736

  • What is the result, when we convert 18° 30' 15" into degree?

    32.7098°
    81.2387°
    18.5042°
    19.2525°
  • What is the result, when we convert 100g into radian measure?

    ((frac{π}{4}))c
    ((frac{π}{6}))c
    ((frac{π}{8}))c
    ((frac{π}{2}))c
  • What is the result, when we convert 230g into degree?

    207°
    205°
    204°
    206°
  • What is the value of π ?

    (frac{22}{7})
    (frac{21}{7})
    (frac{23}{6})
    (frac{7}{22})
  • You scored /15


    Take test again

Any Questions on Measurement of Angles ?

Please Wait...

No discussion on this note yet. Be first to comment on this note