Videos Related with Conditional Trigonometric Identities

Note on Conditional Trigonometric Identities

  • Note
  • Things to remember
  • Videos
  • Exercise

 

examples for Conditional Trigonometric Identities. examples for Conditional Trigonometric Identities.

Identities which are true under some given conditions are termed as conditional identities.

In this section, we will deal some trigonometric identities which are bound to the condition of the sum of the angles of a triangle i.e. A + B + C =π

Properties of supplementary and complementary angles

(i)  Since   A + B + C = π

     Then,   A + B = π - C, B + C = π - A and A + C = π - B

     Now,   sin(A + B) = sin(π - C) = sin C

                sin(B + C) = sin( π - A) = sin A

                sin(A + C) = sin(π -B) = sin B

     Again, cos(A + B) = cos(π - ) = -cos C

                cos(B + C) = cos(π - A) = -cos A

                cos(A + C) = cos(π - B) = -cos B

     Also,   tan(A + B) = tan(π- C) = -tan B

                tan(B + C) = tan(π- A) = -tan A

                tan(A + C) = tan(π - B) = -tan B

(ii) Since    A + B + C = π

Then,      \(\frac{A}{2}\) + \(\frac{B}{2}\) + \(\frac{C}{2}\) = \(\frac{π}{2}\). So, \(\frac{A + B}{2}\) = \(\frac{π}{2}\) - \(\frac{C}{2}\), \(\frac{B + C}{2}\) = \(\frac{π}{2}\) - \(\frac{A}{2}\) and \(\frac{A + C}{2}\) = \(\frac{π}{2}\) - \(\frac{B}{2}\)

Now,       sin(\(\frac{A + B}{2}\)) = sin(\(\frac{π}{2}\) - \(\frac{C}{2}\)) = cos \(\frac{C}{2}\)

                sin(\(\frac{B + C}{2}\)) = sin(\(\frac{π}{2}\) - \(\frac{A}{2}\)) = cos \(\frac{A}{2}\)

                sin(\(\frac{A + C}{2}\)) = sin(\(\frac{π}{2}\) - \(\frac{B}{2}\)) = cos \(\frac{B}{2}\)

Again,      cos(\(\frac{A + B}{2}\)) = cos(\(\frac{π}{2}\) - \(\frac{C}{2}\)) = sin \(\frac{C}{2}\)

                cos(\(\frac{A + C}{2}\)) = cos(\(\frac{π}{2}\) - \(\frac{B}{2}\)) = sin \(\frac{B}{2}\)

                cos(\(\frac{B + C}{2}\)) = cos(\(\frac{π}{2}\) - \(\frac{A}{2}\)) = sin \(\frac{A}{2}\)

Also,       tan(\(\frac{A +B}{2}\)) = tan(\(\frac{π}{2}\) - \(\frac{C}{2}\)) = cot \(\frac{C}{2}\)

                tan(\(\frac{A + C}{2}\)) = tan(\(\frac{π}{2}\) - \(\frac{B}{2}\)) = cot \(\frac{B}{2}\)

                tan(\(\frac{B + C}{2}\)) = tan(\(\frac{π}{2}\) - \(\frac{B}{2}\)) = cot \(\frac{A}{2}\)

 

Conditional Trigonometric Identities

  • Properties of supplementary and complementary angles
.

Very Short Questions

0%

DISCUSSIONS ABOUT THIS NOTE

You must login to reply

Forum Time Replies Report


You must login to reply


You must login to reply


You must login to reply

SAD

If 1/sinA 1/cosA=1/sinA 1/cosB prove that cot A=[(A B)/2]=tanA.tanB


You must login to reply