Roots and Surds | kullabs.com
Notes, Exercises, Videos, Tests and Things to Remember on Roots and Surds

Please scroll down to get to the study materials.

Registration open for Special Discounts

Note on Roots and Surds

Registration open for Mr and Miss SEE
  • Note
  • Things to remember
  • Videos
  • Exercise
  • Quiz

Roots

.

\begin{align*} \text {We know that} \: 3 \times 3 &= 9 \\ or, \: 3^2 &= 9 \\ or, \: 3^{2 \times \frac {1}{2}} &= 9^{\frac{1}{2}} \\ or, \: 3 &=9^{\frac{1}{2}} \\ or, \: 3 &= \sqrt{9} \\ \end{align*}

The square root of 9 is 3.

\begin{align*} similarly, \: 5 \times 5\times 5 &= 125 \\ or, \: 5^3 &= 125 \\ or, 5^{3 \times \frac {1}{3}} &= (125)^{\frac{1}{3}} \\ or, \: 5 &= (125)^{\frac{1}{3}} \\ or, \: 5 &= \sqrt[3]{125} \end{align*}

The cube root of 125 is 5.
In case of equation, root indicates the value of variable.
e.g. x + 2 = 0, x = -2,
So, -2 is the root of x
e.g. x2 - 4 = 0,
(x - 2)(x +2) = 0

Either, (x - 2) = 0 or, x = 2
or, (x + 2) = 0, x = -2

So, -2 and 2 are roots of x2 -4 =0

Surds

.

Surds are numerical expressions containing an irrational number. Surds may be quadratic, bi-quadratic, cubic etc.

For example: \( \sqrt{2}, \sqrt[3]{3}, \sqrt [4]{4}, \sqrt [5] {5}\)

The surds cannot be written in the form of \( \frac {p}{q} \) q≠ 0, so they are irrational numbers.

Types of surds

  1. Pure surds:
    If the natural number is completely inside the root or radical, the surd is called pure surd. \( \sqrt {2}, \sqrt [3]{5} \) are pure surds.
  2. Mixed surd:
    If the integers are inside and outside the radical, the surds is called mixed surd. 2\( \sqrt [2] {5} \) is a mixed surd.
  3. Simple surd:
    The single surd which may be pure or mixed is called simple surd. \( \sqrt [4]{4} \: and \:3 \sqrt [4]{6} \) are simple surds.
  4. Compound surd
    The sum or difference of two pure or mixed surds is called compound surd. \( \sqrt {5} + 2 , \: \sqrt[3]{2} + 6 \) are compoud surds.
  5. Like surds
    If the power (degree) of surds and number inside the root is same the surds are called like surds.\( \sqrt {5} , 2\sqrt {5} \) are like surds.
  6. Unlike surds
    If a power of root is different or numbers inside the root are different the surds are called, unlike surds.\( \sqrt {5} , \sqrt [4]{4}\:and \sqrt {2}\) are unlike surds.

Four fundamental operations on surds

.
  1. Additional and subtraction of surds:
    The addition and subtraction of like surds can exist, unlike surds are neither added nor subtracted. For example: \( 7 \sqrt{2} + 8 \sqrt{2} = (7 + 8) \sqrt{2} = 15 \sqrt{2} \)
  2. Multiplication and division of surds:
    If the order of surds is same, we can put them within common root and perform the multiplication and division just like in arithmetic.
    For example: a. \(\sqrt {2} \times \sqrt{3} \\ = \sqrt {2 \times 3} \\ = \sqrt {6}\)   b. \( \sqrt{10}÷ \sqrt{2} \\ = \sqrt {\frac{10}{2}} \\ = \sqrt{}5 \)
    If the order of surds are not same then we shall reduce these surds in the same order.
    For example: \(\sqrt{3} \times \sqrt[3]{4} \\ = \sqrt [2 \times 3]{3^3} \times \sqrt [3 \times 2]{4^2} \\ = \sqrt[6]{27} \times \sqrt [6] {16}\\ = \sqrt [6]{27 \times 16} \\ = \sqrt[6] {432} \)

\(\boxed{\text {Note: Same process can be applied for division also}}\)

 

Surds are numerical expressions containing an irrational number. Surds may be quadratic, bi-quadratic, cubic etc.

For example: \( \sqrt2\), \(\sqrt[3]{2}\), \(\sqrt [4]{4}\), \(\sqrt [5] {5}\)

The surds cannot be written in the form of \( \frac {p}{q} \) q≠ 0, so they are irrational numbers.

.

Very Short Questions

Solution:

\begin{align*} &= 3\sqrt{2} + \sqrt [4] {2500} + \sqrt [4] {64} +6 \sqrt{8}\\&= 3\sqrt{2}+ \sqrt[4]{5 \times 5 \times 5 \times 5 \times 2 \times 2}+ \sqrt [4]{2 \times 2 \times 2 \times 2\times 2 \times 2}+ 6\sqrt{2 \times 2 \times 2}\\&= 3\sqrt{2}+5\sqrt[4]{4}+2\sqrt[4]{4}+12\sqrt{2}\\&=15\sqrt{2}+7\sqrt[4]{4} :_\text {Ans.} \end{align*}

\begin{align*} \sqrt [3] {16} + \sqrt [3] {54} - \sqrt [3] {250} &= \sqrt [3] {2^3 \times 2} + \sqrt [3] {3^3 \times 2} - \sqrt [3] {5^3 \times 2}\\ &= 2\sqrt [3]{2} + 3\sqrt [3]2 - 5\sqrt [3]2\\ &= 5\sqrt [3]2 - 5\sqrt [3]3\\ &= 0_{Ans}\end{align*}

\begin{align*} \frac {\sqrt {a + b} - \sqrt {a - b}}{\sqrt {a + b} + \sqrt {a - b}} &= \frac {\sqrt {a + b} - \sqrt {a - b}}{\sqrt {a + b} + \sqrt {a - b}} \times \frac {\sqrt {a + b} - \sqrt {a - b}}{\sqrt {a + b} - \sqrt {a - b}}\\ &= \frac {(\sqrt {a + b} - \sqrt {a - b})^2}{(\sqrt {a + b})^2 - (\sqrt {a - b})^2}\\ &= \frac {a + b + a - b - 2 \sqrt {a + b}\sqrt {a - b}}{a + b - a + b}\\ &= \frac {2a - 2\sqrt {a^2 - b^2}}{2b}\\ &= \frac {2(a - \sqrt {a^2 - b^2})}{2b}\\ &= \frac {a - \sqrt {a^2 - b^2}}b_{Ans}\\ \end{align*}

\(\frac {\sqrt y + \sqrt 5}{\sqrt y - \sqrt 5}\) = 3

or, \(\sqrt y\) + \(\sqrt 5\) = 3\(\sqrt y\) - 3\(\sqrt 5\)

or, 3\(\sqrt y\) - \(\sqrt y\) = \(\sqrt 5\) + 3\(\sqrt 5\)

or, 2\(\sqrt y\) = 4\(\sqrt 5\)

or, \(\sqrt y\) = \(\frac {4\sqrt 5}{2}\)

or, \(\sqrt y\) = 2\(\sqrt 5\)

Squaring on both sides,

(\(\sqrt y\))2= (2\(\sqrt 5\))2

or, y = 4× 5

∴ y = 20Ans

\(\frac {2y + 3}{\sqrt y - 1}\) = \(\frac 13\) (\(\sqrt y\) + 1)

or, 6y + 9 = (\(\sqrt y\) + 1) (\(\sqrt y\) - 1)

or, 6y + 9 = (\(\sqrt y\))2 - (1)2

or, 6y + 9 = y - 1

or, 6y - y = -1 -9

or, 5y = - 10

or, y = \(\frac {-10}5\)

∴ y = -2Ans

\(\sqrt x\) + 1 = 5 - \(\frac {\sqrt x -1}2\)

or, \(\sqrt x\) + 1 - 5 = \(\frac {- (\sqrt x - 1)}{2}\)

or, \(\sqrt x\) - 4 = \(\frac {-\sqrt x + 1}{2}\)

or, 2\(\sqrt x\) - 8 + \(\sqrt x\) = 1

or, 3\(\sqrt x\) = 1 + 8

or, 3\(\sqrt x\) = 9

or, \(\sqrt x\) = \(\frac 93\)

or, \(\sqrt x\) = 3

Squaring on both sides,

(\(\sqrt x\))2 = 32

∴ x = 9 Ans

\(\sqrt x\) + \(\sqrt {x - 20}\) = 10

or, \(\sqrt {x - 20}\) = 10 - \(\sqrt x\)

Squaring on both sides,

(\(\sqrt {x - 20}\))2 = (10 - \(\sqrt x\))2

or, x - 20 = 100 - 20\(\sqrt x\) + x

or, 20\(\sqrt x\) = 100 + 20

or, \(\sqrt x\) = \(\frac {120}{20}\)

or, \(\sqrt x\) = 6

Squaring on both sides,

(\(\sqrt x\))2 = 62

∴ x = 36Ans

\(\sqrt {4 (x + 1)}\) = \(\sqrt {4x}\) + 1

Squaring on both sides,

(\(\sqrt {4 (x + 1)}\))2 = (\(\sqrt {4x}\) + 1)2

or, 4(x + 1) = 4x + 2\(\sqrt {4x}\) + 1

or, 4x + 4 - 4x - 1 = 2\(\sqrt {4x}\)

or, \(\frac 32\) = \(\sqrt {4x}\)

Again,

Squaring on both sides,

(\(\sqrt {4x}\))2 = (\(\frac 32\))2

or, 4x = \(\frac 94\)

or, x = \(\frac 9{4 \times 4}\)

∴ x = \(\frac 9{16}_{Ans}\)

0%
  • √27 + √75 - 8√3

    zero


    six


    five


    eight


  • √32 + √8 - √72

    zero


    five


    one


    two


  • √12 - √75 + √48

    √8


    √3


    √2


    √7


  • √50 + √18 - 8√2

    five


    zero


    nine


    three


  • √125 - √45 + √5

    3√9


    3√6


    3√5


     3√2


  • (sqrt {3x+13}=5)

    2


    8


    4


    5


  • (sqrt {2x+1}-3=0)

    4


    7


    9


    2


  • (sqrt {x+3}-1=2)

    8


    10


    6


    9


  • (sqrt {x+2}=3)

    2


    7


    9


    5


  • (sqrt {2a-1}=3)

    12


    9


    5


    2


  • 4(sqrt {a-3}=sqrt{5a+7})

    5
    9
    3
    2
  • (frac{x-1}{sqrt{x}-1}=2+frac{sqrt x-5}{3})

    5
    7
    6
    1
  • (frac{x-6}{sqrt{x}-1}=4-frac{sqrt x-2}{3})

    20
    12
    18
    16
  • (frac{3x-1}{sqrt{3x+6}}=1+frac{sqrt 3x-1}{2})

    2
    6
    3
    1
  • (sqrt{x+3} ={sqrt{2x+4}}-1)

    7
    2
    6
    9
  • You scored /15


    Take test again

DISCUSSIONS ABOUT THIS NOTE

No discussion on this note yet. Be first to comment on this note