Subject: Science
Measurement is defined as the comparison between unknown quantities with known quantities of the same kind. To approach the subject quantitatively, it is essential that we make measurements.
A physical quantity is that which can be measured directly or indirectly. Mass, length, time, density, etc. are some examples of the physical quantity.
The measurement of unknown quantity can be done by comparing it with a standard quantity of the same kind. Thus, the comparison of an unknown quantity with a known quantity with a known or standard quantity is called measurement.
Those physical quantities, which can neither be derived from others nor be further resolved into simpler quantities, are called fundamental quantities. Length, mass, and time are the fundamental quantity. And the units of fundamental quantities are called fundamental units or basic units.
For example length of the body is a fundamental quantity as it cannot be expressed in terms of other quantity.
Those physical quantities, which depend on two or more fundamental quantities or power of a fundamental quantity, are called derived quantities. And the units of derived quantities are called derived units.
For example, Area is a derived quantity. Since area= l × b, so it depends on the power of length.
The reference standard with which we carry out the measurement of any physical quantity of the same kind is called unit. For example, the meter is the unit of length and kg is the unit of mass.
In Nepal, some people still use the local units like haat and mana for measurement of length and mass. These units may vary from place to place. So, in order to maintain the uniformity in measurement of physical quantities, the following standard units are used:
Fundamental quantity | Unit | Symbol |
Length | Meter | m |
Mass | Kilogram | kg |
Time | Second | s |
Temperature | Kelvin | K |
Electric current | Ampere | A |
Luminous intensity | Candela | cd |
Amount of substance | Mole | mol |
Fundamental quantity | Unit |
Length | M |
Mass | Kg |
Time | Second (s) |
Temperature | Kelvin (K) |
Amount of substance | mol (mole) |
Luminous intensity | cd (candela) |
Electric current | A (Ampere) |
Fundamental units | Derived units |
They are independent to the other units. | They are dependent to fundamental units. |
There are seven fundamental units. | Except those 7, all are derived units. |
Example: meter (m), kilogram (kg), | For example: Pascal (Pa), Newton (N), etc. |
SI unit | MKS unit |
It is an extension of MKS system. | It is the system where length is measured in meter, mass in kg and time in second. |
It has brought uniformity in measurement. | It could not bring similarity in the measurement. |
Work | Power |
It is the product of force and displacement in the direction of force. | It is the rate of doing work |
Mathematically, W = F x d |
Mathematically, P = ![]() |
Its SI unit is Joule | Its SI unit is Watt. |
It does not depend upon time. | It depends on time. |
State the relation between horsepower (hp) and watt(w).
The relation between the horsepower (hp) and watt (W) is
1 hp = 746 Watt
=750 Watt (approx)
Convert 500 mm into cm,m and km.
Solution
(a) 500 mm = 500 /10 = 50 cm [10mm=1cm]
(b) 500 mm = 50
= 500/100 = 5m = 5x\(10^{-2}\) [100cm=1m]
(c)500 mm = 5x\(10^{-2}\)m
= 5x\(10^{-2}\)m / 1000 km = 5x\(10^{-6 }\) [1000m=1km]
Convert 10kg into grams (g)
10 kg = 10x1000 = 10000g= 1x \(10^{4}\) [1000gm=1kg]
Hence, 10 kg equals 1x \(10^{4}\)
Express 2 hours, 10 minutes and 40 seconds into SI system.
2 hours, 10 minutes and 40seconds
= 2 x 60min+10min+40 s
= 120 min + 10min+40 s
= 130 x 60s + 40s
= 7800 + 40 s
= 7840 s
= 7.84 x \(10^{3}\) s
Hence, 2hr , 15 min and 30 sec equals 7.84 x \(10^{3}\) sec
Express the following in power of 10.
(a). 2,000,000,000
Solution :
2,000,000,000,
= 2 x \(10^{9}\)
Express the following in power of 10.
(b). 0.000,000,0026
= 2.6 x \(10{^-9}\)
Express the following in power of 10.
(c). 2 x \(10^{6}\) x 2.5 x \(10^{-3}\)
= 2 x 2.5 x \(10^{6}\) x \(10^{-3}\)
= 5.0 x \(10^{6-3 }\)
= 5 x \(10^{3}\)
Convert 3.5 x \(10^{12}\)\(mm^{2}\) into \( km^{2}\)
= 3.5 x \(10^{12}\) x \(10^{-3}\) x \(10^{-3}\) x \(10^{-3}\) x \(10^{-3}\)\(km^{2}\) [1km= \(10^{3}\)m]
= 3.5\(km^{2}\)
Thus, 3.5 x \(10^{12}\)\(mm^{2}\) is equal to 3.5\(km^{2}\) .
Convert 4.91 x \(10^{4}\)\(mm^{3}\) into \(cm^{3}\).
= 4.91 x \(10^{4}\) x \(10^{3}\) x \(10^{3}\) x \(10^{3}\)\(m^{3}\)
= 4.91 x \(10^{13}\) x \(10^{2}\)x \(10^{2}\) x \(10^{2}\) x \(cm^{3}\)
= 4.91 x \(10^{19}\)\(cm^{3}\)
Thus, 4.91 x \(10^{4}\)\(km^{3}\) is equal to4.91 x \(10^{19}\)\(cm^{3}\)
Diameter of a football is 80cm. Find the volume of the ball.
Given,
Diameter of the volleyball (d) = 80cm
Radius of the volleyball (r) = \(\frac{80}{2}\) = 40cm = 0.4m
Volume of the volleyball (V) = ?
We know that,
V = \(\frac{4}{3}\ \pi\ r^{3}\)
= \(\frac{4}{3}\ \times\) \(\frac{22}{7}\) \(\times\) [ 0.4\(^3\) ]
= \(\frac{5.632}{21}\)
= 0.271
= 2,71 \(\times\) \(10^{-2}\) m\(^3\)
Hence, the volume of the volleyball is 2,71 \(\times\) \(10^{-2}\) m\(^3\)
A 22mm\(\times\) 155mm\(\times\) 10mm book weighs 1.25kg. It consists of 500 sheets of paper, each paper being equally thick. Find
(a) the volume of the book
(b) area of each sheet
Here.
Length = 22mm
Breadth = 155mm
Height = 10mm
We Know
Volume of rectangular Object = L \(\times\) B \(\times\) H
= 22 \(\times\) 155 \(\times\) 10
= 3.41 \(\times\) \(10^5\) \(m ^ -5\)
Again,
Area of book = Length \(\times\) breadth
= 3.41\(\times\) \(10^{-3}\) \(m ^2\)
Hence, the volume of the book is 3.41 \(\times\) \(10 ^5\) \(m^{-5}\) and the area os each sheet is 3.41\(\times\) \(10^{-3}\) \(m^2\).
A cylinder has length 50cm and radius 4cm, Find its volume.
given,
Length = 50cm
Radius = 4cm
We know,
Volume of Cylinder = π(radius)\(^2\) \(\times\) (length)
= 3.14 x 4\(^2\)\(\times\) 50
= 2512
Covert 512 millimeters into metre.
Solution ;
512mm = 51.2 cm
= \(\frac{51.2}{100}\) m = 0.512m = 5.12 \(\times\) \(10^{-2}\)m
Thus 512m = 5.12 \( \times \;10^{-2} \)m
(b). 4.6 hours into second.
Solution ;
1hour = 60min
\(\therefore\) 1 hour = 3600 sec
Now,
3600 \(\times\) 4.6
= 16560s
\(\therefore\) 4.6 hours =16560s
(c). 12 kg into grams.
Solution;
12kg = 12 \(\times\) 1000g
= 12000g
= 1.2 \(\times\) \(10^{4}\) g [\(\therefore\)1000gm = 1kg]
Hence, 12kg equals 1.2 \(\times\) \(10^{4}\) g
(c). 120 milligrams into kilograms.
Solution:
Now,
1kg = 1000000mg
So,
= \(\frac{120}{1000000}\)
= 1.2 \(\times\) \(10^{-5}\)kg
\(\therefore\) 120 milligrams equals 1.2 \(\times\) \(10^{-5}\)kg
(e). 50 hours into seconds
Solution:
1min= 60 seconds
1hr = 60 minutes
So,
50 hours = 50 \(\times\) 60 (\times\) 60
= 180000S
\(\therefore\) 50 hours equals 180000Seconds.
(f) . 6.2 kilograms into grams.
Solution:
1kg = 1000g
6.2 x 1 kg = 6.2 x 1000 g {Multiplying both sides by 6.2}
6.2 kg = 6200g
Express the following in powers of 10.
(a). 10,000,000,000,000,000
Solution:
1 \(\times\) \(10^{16}\)
= \(10^{16}\)
(b). 0.000,000,000,1m
Solution :
1 \(\times\) 1. \(10^{10}\) = 1. \(10^{10}\)
(c). 2.3 \(\times\) 10\(\times\) \(^7\) \(\times\) 5 \(\times\) \(10^{-2}\)
Solution:
= 2.3 \(\times\)5 \(\times\) 10 \(^7\) \(\times\) \(10^{-2}\)
= 1.15 \(\times\) \(10^{6}\)
7. If the area of a room is 36\(m^{2}\) and its length is 6m, find its breadth.
Solution:
Here,
Area of room = 36\(m^{2}\)
Length of room = 6m
We know that,
Area of rectangular room = L \(\times\) B
or, 36 = 6 \(\times\) b
or, b = \(\frac{36}{6}\)
or, b = 36m
Hence, Its breadth is 36m.
© 2019-20 Kullabs. All Rights Reserved.