Subject: Optional Mathematics
Different angles have a different value with various trigonometric ratios. We shall consider 0°, 30°, 45° and 90° as the standard angles and we shall learn their values here. In this unit, we shall verify the values of 0°, 30°, 45° and 90° using geometrical proofs. Different angles have a different value with various trigonometric ratios. We shall consider 0°, 30°, 45° and 90° as the standard angles and we shall learn their values here. In this unit, we shall verify the values of 0°, 30°, 45° and 90° using geometrical proofs.
Different angles have a different value with various trigonometric ratios. We shall consider 0°, 30°, 45° and 90° as the standard angles and we shall learn their values here. In this unit, we shall verify the values of 0°, 30°, 45° and 90° using geometrical proofs.
Trigonometrical Ratio of 45°
Let ABC be a right-angledisosceles trianglewhere \(\angle\)B = 90° and \(\angle\)A = \(\angle\)C = 45°
Also let BC = AC = \(\alpha\).
We know, in right angled \(\triangle\)ABC
h2 = p2 + b2
or, (AC)2 = (AB)2 + (BC)2
or, (AC)2 = \(\alpha\)2 + \(\alpha\)2
or, (AC)2 = 2 \(\alpha\)2
∴ AC = \(\alpha\)\(\sqrt{2}\)
Taking \(\angle\)C as the reference angle, we get,
sin 45 = \(\frac{AB}{AC}\)= \(\frac{α}{α\sqrt{2}}\) = \(\frac{1}{\sqrt{2}}\)
cos 45 = \(\frac{BC}{AC}\)= \(\frac{α}{α\sqrt{2}}\) = \(\frac{1}{\sqrt{2}}\)
tan 45 = \(\frac{AB}{BC}\)= \(\frac{α}{α}\) = 1
cosec 45 = \(\frac{AC}{AB}\)= \(\frac{α\sqrt{2}}{α}\) = \(\sqrt{2}\)
sec 45 = \(\frac{AC}{AB}\)= \(\frac{α\sqrt{2}}{α}\) =\(\sqrt{2}\)
cot 45 = \(\frac{BC}{AB}\) = \(\frac{α}{α}\) = 1
Let ABC be an equilateral triangle where\(\angle\)A = \(\angle\)B = \(\angle\)C = 60°
and AB = BC = CA = 2\(\alpha\)
Now, let's draw AD perpendicular to BC so that,
BD = DC = a and \(\angle\)BAD = \(\angle\)DAC = 30°
Now, in right angled \(\triangle\)ADC,
(AC)2 = (AD)2 + (DC)2
or, (AD)2 = (AC)2 + (DC)2
= (2α)2 - (α)2
= 4\(\alpha\)2 - \(\alpha\)2 = 3\(\alpha\)2
\(\therefore\) AD = \(\alpha\)\(\sqrt{3}\)
Now, to find the trigonometric ratio for 60°, lets take \(\angle\)C = 60° as the reference angle, we get,
sin 60° = \(\frac{AD}{AC}\) = \(\frac{\alpha\sqrt{3}}{2α}\) = \(\frac{\sqrt{3}}{2}\)
cos 60° = \(\frac{DC}{AC}\)= \(\frac{α}{2α}\) =\(\frac{1}{2}\)
tan 60° = \(\frac{AD}{DC}\)=\(\frac{\alpha\sqrt{3}}{2α}\) = \(\sqrt{3}\)
cosec 60° = \(\frac{AC}{AD}\)= \(\frac{2α}{\alpha\sqrt{3}}\) = \(\frac{2}{\sqrt{3}}\)
sec 60° = \(\frac{AC}{DC}\)= \(\frac{2α}{α}\) = 2
cot 60° = \(\frac{DC}{AD}\)= \(\frac{α}{\alpha\sqrt{3}}\) = \(\frac{1}{\sqrt{3}}\)
Now, to find out the trigonometric ratio for 30° , let's take \(\angle\)DAC = 30° as the reference angle, we get,
sin 30° =\(\frac{DC}{AC}\)= \(\frac{α}{2α}\) =\(\frac{1}{2}\)
cos 30° = \(\frac{AD}{AC}\) = \(\frac{\alpha\sqrt{3}}{2α}\) = \(\frac{\sqrt{3}}{2}\)
tan 30° =\(\frac{DC}{AD}\)= \(\frac{α}{\alpha\sqrt{3}}\) = \(\frac{1}{\sqrt{3}}\)
cosec 30° =\(\frac{AC}{DC}\)= \(\frac{2α}{α}\) = 2
sec 30° = \(\frac{AC}{AD}\)= \(\frac{2α}{\alpha\sqrt{3}}\) = \(\frac{2}{\sqrt{3}}\)
cot 30° =\(\frac{AD}{DC}\)=\(\frac{\alpha\sqrt{3}}{2α}\) = \(\sqrt{3}\)
Trigonometrical Ratio of 0°
Let ABC be a right angled triangle where \(\angle\)B = 90° and \(\angle\)C = \(\theta\).
If \(\theta\) tends to 0°
i.e \(\theta\)→0°, AC coincides with BC.
or, AC \(\approx\)BC
so, AC= BC = a (say)
Now, using pythagoras theorem
h2= p2+ b2
or, (AC)2=(AB)2+ (BC)2
or, a2 = (AB)2 + a2
or, (AB)2 = a2 - a2 = 0
\(\therefore\) AB = 0
Now, taking right angled \(\triangle\)ABC
sin 0° = \(\frac{p}{h}\) =\(\frac{AB}{AC}\) =\(\frac{0}{a}\) = 0
cos 0° =\(\frac{b}{h}\) = \(\frac{BC}{AC}\) = \(\frac{a}{a}\) = 1
tan 0° =\(\frac{p}{b}\) = \(\frac{AB}{BC}\) = \(\frac{0}{a}\) = 0
cosec 0° =\(\frac{h}{p}\) = \(\frac{AC}{AB}\) = \(\frac{a}{0}\) = \(\infty\)
sec 0° =\(\frac{h}{b}\) = \(\frac{AC}{BC}\) = \(\frac{a}{a}\) = 1
cot 0° =\(\frac{b}{p}\) = \(\frac{BC}{AB}\) = \(\frac{a}{0}\) = \(\infty\)
Trigonometric Ratio of 90°
Let ABC be a right angled triangle where \(\angle\)B = 90° and \(\angle\)C = \(\theta\) be the reference angle.
If \(\theta\) tends to 90°
i.e \(\theta\)→90°, AC coincides with BC.
or, AC \(\approx\)AB
so, AC= AB = a (say)
Now, using pythagoras theorem
h2= p2+ b2
or, (AC)2=(AB)2+ (BC)2
or, a2 = (BC)2 + a2
or, (BC)2 = a2 - a2 = 0
\(\therefore\) BC = 0
Now, taking right angled \(\triangle\)ABC
sin 90° = \(\frac{p}{h}\) =\(\frac{AB}{AC}\) =\(\frac{a}{a}\) =1
cos 90° =\(\frac{b}{h}\) = \(\frac{BC}{AC}\) = \(\frac{0}{a}\) = 0
tan 90° =\(\frac{p}{b}\) = \(\frac{AB}{BC}\) = \(\frac{a}{0}\) =\(\infty\)
cosec 90° =\(\frac{h}{p}\) = \(\frac{AC}{AB}\) = \(\frac{a}{a}\) =1
sec 90° =\(\frac{h}{b}\) = \(\frac{AC}{BC}\) = \(\frac{a}{0}\) = \(\infty\)
cot 90° =\(\frac{b}{p}\) = \(\frac{BC}{AB}\) = \(\frac{0}{a}\) =0
Two angles are Complementary when they add up to 90 degrees.
Let'a see the following example,
What is the angle added to 60° and 90°?
Let the angle be x.
Then, x + 60° = 90°
or, x = 90° - 60° = 30°
Hence, 30° and 60° when added together gives us 90°, So, 30° and 60° are called complements of each other.
The angles are said to be complementary if the sum of the angles is 90°.
Complementary Angles in Trigonometry
Let ABC be a right angledtriangle where \(\angle\)ABC = 90° and \(\angle\)ACB = \(\theta\)
Now, we know,
\(\angle\)ACB +\(\angle\)ABC +\(\angle\)BAC = 180° (sum of angles of a \(\triangle\))
or, \(\theta\) + 90° + \(\angle\)BAC = 180°
or, \(\angle\)BAC = 180° - 90° - \(\theta\) = 90° - \(\theta\)
So, \(\angle\)ACB and\(\angle\)CAB are complementary angles.
Now, taking\(\angle\)A = 90° - \(\theta\) as the reference angle, we get,
BC = perpendicular (p)
AC = hypotenuse (h)
AB = base (b)
So,
sin(90° - \(\theta\)) = \(\frac{p}{h}\) =\(\frac{BC}{AC}\) = cos\(\theta\) (For reference angle \(\theta\))
cos (90° - \(\theta\)) = \(\frac{b}{h}\) =\(\frac{AB}{AC}\) = sin\(\theta\)
tan(90° - \(\theta\)) =\(\frac{p}{h}\) =\(\frac{BC}{AB}\) = cot\(\theta\)
cot(90° - \(\theta\)) =\(\frac{b}{p}\) =\(\frac{AB}{BC}\) = tan\(\theta\)
sec(90° - \(\theta\)) =\(\frac{h}{b}\) =\(\frac{AC}{AB}\) = cosec\(\theta\)
cosec(90° - \(\theta\)) =\(\frac{h}{p}\) =\(\frac{AB}{BC}\) = sec\(\theta\)
Hence,
sin(90° - \(\theta\)) = cos\(\theta\)
cos(90° - \(\theta\)) = sin\(\theta\)
tan(90° - \(\theta\)) =cot\(\theta\)
cot(90° - \(\theta\)) =tan\(\theta\)
sec(90° - \(\theta\)) = cosec\(\theta\)
cosec(90° - \(\theta\)) =sec\(\theta\)
sin4200 cos3900 + cos3900 + cos (-3000) sin (-3300) = 1
soln: L.H.S = sin4200 cos 3900 + cos (-3000) sin (-3300)
= sin4200 cos3900 + cos3000 (-sin3300)
= sin4200 cos3900 - cos3000 sin3300
= sin (3600 + 600) cos (3600 + 300) - cos (3600-60o) sin(3600-300)
= sin600 cos300 cos600 (-sin 300) = sin600 cos300 + cos600sin300
= \(\frac{(\sqrt{3})}{2}\)×\(\frac{(\sqrt{3})}{2}\)+\(\frac{1}{2}\)×\(\frac{1}{2}\)=\(\frac{3}{4}\)+\(\frac{1}{4}\)=\(\frac{3+1}{4}\)=\(\frac{4}{4}\)=1= R.H.S. proved.
If aA =30, then verify that sin3A = 3sinA - 4sin3A
Given that A = 30°
Then, LHS = sin3A
= sin3 × 30°
= sin90°
= 1
RHS = 3sinA - 4sin3A
= 3sin30° - 4(sin30°)3
= 3\(\frac{1}{2}\) - 4(\(\frac{1}{2}\))3
= \(\frac{3}{2}\) - 4 \(\frac{1}{8}\)
= \(\frac{3}{2}\) - \(\frac{1}{2}\)
= \(\frac{2}{2}\)
= 1
\(\therefore\) LHS = RHS verified.
Cos 60° = cos230° - sin230°
Solution
LHS = cos 60
= \(\frac{1}{2}\)
RHS = cos230° - sin230°
(\(\frac{\sqrt(3)}{2}\))2 - (\(\frac{1}{2}\))2
\(\frac{3}{4}\) - \(\frac{1}{4}\)
\(\frac{2}{4}\)
\(\frac{1}{2}\)
\(\therefore\) LHS = RHS proved.
x.sin 30 × cos245° = \(\frac{cot^230° sec60° tan45°}{cosec^245°×cosec30°}\)
Solution
Here, x×sin30° cos245° = \(\frac{cot^230° sec60° tan45°}{cosec^245°×cosec30°}\)
or, x×\(\frac{1}{2}\)×(\(\frac{1}{\sqrt(2)}\))2 = \(\frac{(\sqrt(3)^2×2×1)}{(\sqrt(2)^ 2×2}\)
or, x = \(\frac{3×2×2×2}{2×2}\) = 6
cot 3\(\theta\) = tan 7\(\theta\)
Solution
Here, cot 3\(\theta\) = tan 7\(\theta\)
or, cot 3\(\theta\) = cot (90° -7\(\theta\)) [cot(90° - \(\theta) = tan\theta\)]
or, 3\(\theta\) = 90° - 7\(\theta\)
or,10\(\theta\) = 90°
\(\therefore\) \(\theta\) = 9°
Solve the triangle ABC if B = 90°, a = \(\sqrt(3)\) and c = 1.
Solution
Here, In ABC
B = 90° (Since Ac is the hypotenuse.)
So, using Pythagoras theorem
(AC)2 = (AB)2 + (BC)2
= (1)2 +(\(\sqrt(3)\))2
= 1 + 3 = 4
or, AC = 2 = b
Now, sinA =\(\frac{BC}{AC}\)
or, sinA = \(\frac{\sqrt(3)}{2}\)
or, sinA = sin 60°
\(\therefore\) A = 60°
Again,
\(\angle\)A + \(\angle\)B + \(\angle\)C = 180°
or, 60° + 90° + \(\angle\)C = 180°
C = 180° - 150° = 30°
Hence, b = 2, A = 60° and C = 30°
Evaluate if (xc = 180°)sec2\(\frac{π}{4}\) sec2\(\frac{π}{3}\)(cosec\(\frac{π}{6}\) - cosec\(\frac{π}{2}\))
Solution
sec2\(\frac{π}{4}\) sec2\(\frac{π}{3}\)(cosec\(\frac{π}{6}\) - cosec\(\frac{π}{2}\))
= sec2 \(\frac{180°}{4}\) × sec2\(\frac{180°}{3}\) (cosec\(\frac{180°}{6}\) - cosec\(\frac{180°}{2}\))
= sec245° × sec260° (cosec30° - cosec90°)
= (\(\sqrt(2)\))2 × (2)2 (2-1)
= 2×4×1
= 8
© 2019-20 Kullabs. All Rights Reserved.