Subject: Optional Maths
The ratios which are generally used to calculate the unknown lengths and angles in a right triangle is called trigonometric ratios. Trigonometric Expressions are the expressions in which variables are written under the signs of trigonometric functions. This note has information about trigonometric ratios, its operations, trigonometric expressions and reciprocals relations.
There are six trigonometric ratios which relate the sides of a right triangle to its angles. Trigonometric ratios are generally used to calculate the unknown lengths and angles in a right triangle. The six trigonometric ratios are tabulated below: -
1) Sinθ | \(\frac{perpendicuar}{hypotenuse}\) (\(\frac{p}{h}\)) |
2) Cosθ | \(\frac{base}{hypotenuse}\) (\(\frac{b}{h}\)) |
3) Tanθ | \(\frac{perpendicuar}{base}\) (\(\frac{p}{b}\)) |
4) Cosecθ | \(\frac{hypotenuse}{perpendicuar}\) (\(\frac{h}{p}\)) |
5) Secθ | \(\frac{hypotenuse}{base}\) (\(\frac{h}{b}\)) |
6) Cotθ | \(\frac{base}{perpendicuar}\) (\(\frac{b}{p}\)) |
NOTE: - Since, Sinθ ≠ Sin×θ, Cosθ ≠ Cos×θ, etc.
As we know that the trigonometric ratios are numbers like fraction, decimal or whole numbers. We can operate the operations of addition, subtraction, multiplication and division on them that we do in algebra.
Operations | In algebra | In Trigonometry |
Addition | 2a + 4a = 6a 4x2 + 7x2 = 11x2 |
2sinθ + 4sinθ = 6sinθ 4cos2θ + 7cos2θ = 11cos2θ |
Subtraction | 11z − 6z = 5z 8x2− 5x2 = 3x2 |
11tanθ − 6tanθ = 5tanθ 8sec2θ − 5sec2θ = 3sec2θ |
Multiplication | 7a × 4a = 28a2 5y2× 3y2= 15y4 |
7sinθ × 4sinθ = 28sin2θ 5tan2θ × 4tan2θ = 20tan4θ |
Division | \(\frac{q^{5}}{q}\) = q4 10b ÷ 5b = 2 |
\(\frac{cosθ^{5}}{cosθ}\) = cosθ4 10secθ ÷ 5secθ = 2 |
Trigonometric Expressions are the expressions in which variables are written under the signs of trigonometric functions.
We can simplify or factorise the trigonometric expressions as in algebra. For examples,
Simply there are four fundamental relations of trigonometric ratios. They are,
Reciprocal Relation
Reciprocal relations of trigonometric ratios are explained to represent the relationship between the three pairs of trigonometric ratios as well as their reciprocals. The reciprocals relations are given below: -
Sinθ = \(\frac{p}{h}\) and Cosecθ = \(\frac{h}{p}\)
Then, sinθ × cosecθ = \(\frac{p}{h}\) × \(\frac{h}{p}\) = 1
∴ Sinθ × cosecθ = 1 |
sinθ = \(\frac{1}{cosecθ }\), cosecθ = \(\frac{1}{sinθ }\)
Also, cosθ = \(\frac{b}{h}\) and secθ = \(\frac{h}{b}\)
Then, cosθ × secθ = \(\frac{b}{h}\) × \(\frac{h}{b}\) = 1
∴ cosθ × secθ = 1 |
cosθ = \(\frac{1}{secθ}\), secθ \(\frac{1}{cosθ}\)
And, tanθ = \(\frac{p}{b}\), cotθ = \(\frac{b}{p}\)
Then tanθ × cotθ = 1
∴ tanθ × cotθ = 1 |
tanθ = \(\frac{1}{cotθ}\), cotθ = \(\frac{1}{tanθ}\)
Quotient Relation
We have, sinθ = \(\frac{p}{h}\), cosθ = \(\frac{b}{h}\)
Then, \(\frac{sinθ}{cosθ}\) = \(\frac{p}{h}\) × \(\frac{h}{b}\) = \(\frac{p}{b}\)
We have tanθ = \(\frac{p}{b}\)
∴ tanθ = \(\frac{sinθ}{cosθ}\)
Similarly,
cotθ = \(\frac{cosθ}{sinθ}\)
Pythagoras Relation
From the right angled triangle ABC,
CA2= AB2 + BC2
or, h2= p2 + b2
Dividing both sides
or, \(\frac{h^{2}}{h^{2}}\) = \(\frac{p^{2}+b^{2}}{h^{2}}\)
or, 1 = \(\frac{p^{2}}{h^{2}}\) + \(\frac{b^{2}}{h^{2}}\)
or, \(\frac{p^{2}}{h^{2}}\) + \(\frac{b^{2}}{h^{2}}\) = 1
or, (\(\frac{p^{2}}{h^{2}}\)) + (\(\frac{b^{2}}{h^{2}}\)) = 1
or, (sinθ)2 + (cosθ)2 = 1
∴ sin2θ = 1 − cos2θ
cos2θ = 1 − sin2θ
Also,
sinθ = \(\sqrt{1-cos^{2}}{θ}\)
or, cosθ = \(\sqrt{1−sin^{2}}{θ}\)
Again,
p2+ b2 = h2
or,h2− p 2= b2
Dividing both sides by b2
or, \(\frac{h^{2}}{b{2}}\) - \(\frac{p^{2}}{b^{2}}\) = \(\frac{b^{2}}{b^{2}}\)
or, (\(\frac{h}{b}\))2 + (\(\frac{p}{b}\))2= 1
or, (secθ)2− (tanθ)2 = 1
or, sec2θ − tan2θ = 1
or, sec2θ = 1 + tan2θ
or, tan2θ = sec2θ − 1
Also,
secθ = \(\sqrt{1+tan^{2}}{θ}\)
or, tanθ = \(\sqrt{sec^{2} θ − 1}\)
Again,
p2+ b 2= h2
or, h2− b 2= p2
Dividing both sides by p2
\(\frac{h^{2}}{p{2}}\) − \(\frac{b^{2}}{p^{2}}\) = \(\frac{p^{2}}{p^{2}}\)
or, (cosecθ)2− (cotθ)2 = 1
or, cosec2θ − cot2θ = 1
or, cosec2θ = 1 + cot2θ
or, cot2θ = cosec2θ − 1
Also, cotθ = \(\sqrt{cosec^{2} θ − 1}\)
or, cosecθ = \(\sqrt{1+cot^{2}}{θ}\)
To prove trigonometric identities, we may follow any one of the following: -
With the use of two methods, we can express the trigonometric ratios in terms of other ratios of the same angle. The two methods are as followings: -
NOTE: - We can also find remaining ratios if the value of any trigonometric ratio of an angle is given. |
As trigonometry have different angles, for those different angles trigonometric ratios also have different values. In the trigonometry the angles 0°, 30°, 45°, 60°, 90°, 120°, 135°, 150°, 180°, 210°, 225°, 240°, 270°, 300°, 315°, 330°, 360° are taken as standard angles.
We can find the trigonometric ratios of 0° and 90°. The following table shows the values of trigonometric ratios of the angles 0°, 30°, 45°, 60° and 90°.
Angles→↓ | 0° | 30° | 45° | 60° | 90° |
sinθ | 0 | \(\frac{1}{2}\) | \(\frac{1}{\sqrt2}\) | \(\frac{\sqrt{3}}{2}\) | 1 |
cosθ | 1 | \(\frac{\sqrt{3}}{2}\) | \(\frac{1}{\sqrt2}\) | \(\frac{1}{2}\) | 0 |
tanθ | 0 | \(\frac{1}{\sqrt3}\) | 1 | \(\sqrt{3}\) | ∞ |
cosecθ | ∞ | 2 | \(\sqrt{2}\) | \(\frac{2}{\sqrt3}\) | 1 |
secθ | 1 | \(\frac{2}{\sqrt3}\) | \(\sqrt{2}\) | 2 | ∞ |
cotθ | ∞ | \(\sqrt{3}\) | 1 | \(\frac{1}{\sqrt3}\) | 0 |
The standard angles i.e 0°, 30°, 45°, 60°, 90° in prompt way is given below: -
Process 1: -
Put the number from 0 to 4 as follows: -
0° | 30° | 45° | 60° | 90° |
0 | 1 | 2 | 3 | 4 |
Process 2: -
Divide each number by 4
0° | 30° | 45° | 60° | 90° |
\(\frac{0}{4}\) | \(\frac{1}{4}\) | \(\frac{2}{4}\) | \(\frac{3}{4}\) | \(\frac{4}{4}\) |
Process 3: -
Take square root of all the numbers
0° | 30° | 45° | 60° | 90° |
\(\sqrt{\frac{0}{4}}\) | \(\sqrt{\frac{1}{4}}\) | \(\sqrt{\frac{2}{4}}\) | \(\sqrt{\frac{3}{4}}\) | \(\sqrt{\frac{4}{4}}\) |
Process 4: -
The values which are obtained at first are the values of sine of the standard angles.
Angles | 0° | 30° | 45° | 60° | 90° |
sin | 0 | \(\frac{1}{2}\) | \(\frac{1}{\sqrt2}\) | \(\frac{\sqrt{3}}{2}\) | 1 |
Process 5: -
Then reversing the order, the value of cosine of theb standard angles are obtained.
Angles | 0° | 30° | 45° | 60° | 90° |
cos | 1 | \(\frac{\sqrt{3}}{2}\) | \(\frac{1}{\sqrt2}\) | \(\frac{1}{2}\) | 0 |
Process: -
After dividing the value of sine by the value of cosine, the values of tangent can be obtained: -
Angle | 0° | 30° | 45° | 60° | 90° |
tan | 0 | \(\frac{1}{\sqrt3}\) | 1 | \(\sqrt{3}\) | ∞ |
NOTE: - The reciprocal of sine, cosine and tangent are the values of cosecant, secant and cotangent respectively. |
Two angles are called complementary when those angles are added up to 90° or the sum of two angles is 90°.
For example,
60° and 30° are complementary angles.
5° and 85° are complementary angles.
30° and 60°, 50° and 40°, (90° - θ) and θ are complementary angles.
Here ABC is a right angle triangle right angled at B.
Let, ∠ABC = θ, then ∠CAB = 90° - θ
Now taking θ as an angle of reference,
AB = Perpendicular (p)
BC = Base (b)
CA = Hyptenuse (h)
Sinθ = \(\frac{p}{h}\) = \(\frac{AB}{CA}\) .............. .(i)
Cosθ = \(\frac{b}{h}\) = \(\frac{BC}{CA}\) ..............(ii)
Tanθ = \(\frac{p}{b}\) = \(\frac{AB}{BC}\) ..............(iii)
Cotθ = \(\frac{b}{p}\) = \(\frac{BC}{AB}\) ...............(iv)
Taking (90° - θ) as an angle of reference,
BC = Perpendicular (p)
AB = Base (b)
CA = Hypotenuse (h)
Now,
Sinθ(90° - θ) = \(\frac{p}{h}\) = \(\frac{BC}{CA}\) = Cosθ
Cosθ(90° - θ) = \(\frac{b}{h}\) = \(\frac{AB}{CA}\) = Sinθ
Tanθ(90° - θ) = \(\frac{p}{b}\) = \(\frac{BC}{AB}\) = Cotθ
On the other hand,
cosec(90° - θ) = secθ
sec(90° - θ) = cosecθ
cot(90° - θ) = tanθ
(sinθ)2 + (cosθ)2 = 1 | sec2θ = 1+tan2θ | cosec2θ - cot2θ = 1 |
sin2θ = 1-cos2θ | sec2θ - tan2θ =1 | cosec2θ = 1 + cot2θ |
, sinθ= \(\sqrt{1-cos^{2}}{θ}\) | tan2θ= sec2θ - 1 | cot2θ = cosec2θ - 1 |
cosθ = \(\sqrt{1-sin^{2}}{θ}\) |
secθ = \(\sqrt{1+tan^{2}}{θ}\) |
cotθ =\(\sqrt{cosec^{2} θ-1}\) |
sec2θ - tan2θ =1 | tanθ = \(\sqrt{sec^{2} θ-1}\) | cosecθ = \(\sqrt{1+cot^{2}}{θ}\) |
Find the value of sinα, cosα and tanα from the given figure.
Solution:
From the given figure,
Hypotenuse (h) = 13cm
Perpendicular (p) = 5cm
Base (b) = 12cm
Now,
\(\therefore\) sinα = \(\frac{p}{h}\) = \(\frac{5}{13}\)
\(\therefore\) cosα = \(\frac{b}{h}\) = \(\frac{12}{13}\)
\(\therefore\) tanα = \(\frac{p}{b}\) = \(\frac{5}{12}\)
Find the value of cosecθ, secθ and cotθ from the given figure.
Solution:
From the given figure,
Hypotenuse (h) = 10cm
Perpendicular (p) = 6cm
Base (b) = 8cm
Now,
\(\therefore\) cosecθ = \(\frac{h}{p}\) = \(\frac{10}{6}\) = \(\frac{5}{3}\)
\(\therefore\) secθ = \(\frac{h}{b}\) = \(\frac{10}{8}\) = \(\frac{5}{4}\)
\(\therefore\) cotθ = \(\frac{b}{p}\) = \(\frac{8}{6}\) = \(\frac{4}{3}\)
Add: 3sinA + 7sinA + 10sinA
Solution:
= (3+7+10)sinA
= 20sinA
Subtract: 7sinθ from 18sinθ
Solution:
= 18sinθ − 7sinθ
= (18 − 7)sinθ
= 11sinθ
Multiply: 3tanA × 7tan4A
Solution:
= 3tanA × 7tan4A
= 21tan1+4A
= 21tan5A
Find the product of: (3sinθ + 2cosθ) (3sinθ − 2cosθ)
= (3sinθ + 2cosθ) (3sinθ− 2cosθ)
= (3sinθ)2− (2cosθ)2
= 9sin2θ − 4cos2θ
Divide: 12tan7A by 3tan3A
Solution:
= 12tan7A÷ 3tan3A
= \(\frac{12tan^7A}{3tan^3A}\)
= 4tan7−3A
= 4tan4A
Simplify: sinθ (1 − cosθ) + cosθ (1 + sinθ)
= sinθ(1− cosθ) + cosθ(1 + sinθ)
= sinθ − sinθ.cosθ + cosθ + sinθ.cosθ
= sinθ + cosθ
Simplify: \(\frac{(sinA − cosA)^2}{sin^2A − cos^2A}\)
= \(\frac{(sinA− cosA)^2}{sin^2− cos^2}\)
= \(\frac{(sinA− cosA)(sinA− cosA)}{(sinA + cosA)(sinA− cosA)}\)
= \(\frac{sinA− cosA}{sinA + cosA}\)
Prove that: \(\frac{sinθ.cosecθ}{secθ}\) = cosθ
Solution:
L.H.S. = \(\frac{sinθ.cosecθ}{secθ}\)
= sinθ cosecθ÷ secθ
= sinθ× \(\frac{1}{sinθ}\)÷ \(\frac{1}{cosθ}\)
= sinθ× \(\frac{1}{sinθ}\)× cosθ
= cosθ
= R.H.S. proved.
Proved that: secθ \(\sqrt{1 − cos^2θ}\) = tanθ
Solution:
L.H.S. = secθ \(\sqrt{1− cos^2θ}\)
= \(\frac{1}{cosθ}\) . sinθ
= \(\frac{sinθ}{cosθ}\)
= tanθ
= R.H.S. proved.
Prove that: sin2θ + cos2θ.tan2θ = 2sin2θ
Solution:
L.H.S. = sin2θ + cos2θ.tan2θ
= sin2θ + cos2θ \(\frac{sin^2θ}{cos^2θ}\)
= sin2θ + sin2θ
= 2sin2θ
= R.H.S. proved
Prove that: (sinA + cosA)2 + (sinA − cosA)2 = 2
Solution:
L.H.S. = (sinA + cosA)2 + (sinA − cosA)2
= sin2A + 2sinA.cosA + cos2A + sin2A − 2sinA.cosA + cos2A
= (sin2A + cos2A) + (sin2A + cos2A)
= 1 + 1
= 2
= R.H.S. proved
Prove that: \(\frac{1}{tanA + cotA}\) = sinA.cosA
Solution:
L.H.S. = \(\frac{1}{tanA + cotA}\)
= \(\frac {1}{\frac {sinA}{cosA} + \frac {cosA}{sinA}}\)
= \(\frac{1}{\frac{sin^2A + cos^2A}{sinA.cosA}}\)
= \(\frac{1}{\frac{1}{sinA.cosA}}\)
= sinA.cosA
= R.H.S. proved
Prove that: \(\frac{sin^4θ − cos^4θ}{sinθ + cosθ}\) = sinθ − cosθ
Solution:
L.H.S. = \(\frac{sin^4θ− cos^4θ}{sinθ + cosθ}\)
= \(\frac{(sin^2θ)^2 − (cos^2θ)^2}{sinθ + cosθ}\)
= \(\frac{(sin^2θ + cos^2θ) (sin^2θ− cos^2θ)}{sinθ + cosθ}\)
= \(\frac{1× (sinθ + cosθ) (sinθ− cosθ)}{sinθ + cosθ}\)
= sinθ− cosθ
= R.H.S. proved
Prove that: \(\frac{cosA}{1 + sinA}\) + \(\frac{cosA}{1 − sinA}\) = 2secA
Solution:
L.H.S. = \(\frac{cosA}{1 + sinA} + \frac{cosA}{1− sinA}\)
= \(\frac{cosA (1− sinA) + cosA (1 + sinA)}{(1 + sinA) (1− sinA)}\)
= \(\frac{cosA− sinA.cosA + sinA.cosA}{1− sin^2A}\)
= \(\frac{2cosA}{cos^2A}\)
= \(\frac{2}{cosA}\)
= 2secA
= R.H.S. proved
Prove that: \(\frac{1 − sin^4A}{cos^4}\) = 1 + 2tan2A
Solution:
L.H.S.
= \(\frac{1− sin^4}{cos4A}\)
= \(\frac{1− sin^4A}{cos^4A}\) − \(\frac{sin^4A}{cos^4A}\)
= sec4A − tan4A
= (sec2A)2− (tan2A)2
= (sec2A− tan2A) (sec2A + tan2A)
= (1 + tan2A + tan2A)
= 1 + 2tan2A
= R.H.S. proved
Prove that: (xcosθ + ysinθ)2 + (xsinθ − ycosθ)2 = x2 + y2
Solution:
L.H.S
= (xcosθ + ysinθ)2+ (xsinθ− yccosθ)2
= (xcosθ)2+ 2xysinθ.cosθ + (ysinθ)2+ (xsinθ)2− 2xysinθ.cosθ + (ycosθ)2
= x2cos2θ + y2sin2θ + x2sin2θ+ y2cos2θ
= x2(cos2θ + sin2θ) + y2(sin2θ + cos2θ)
= (x2+ y2) (cos2θ + sin2θ)
= (x2+ y2) \(\times\) 1 [\(\because\) (cos2θ + sin2θ) =1]
= (x2+ y2) R.H.S. proved
Prove that: \(\sqrt\frac{1 + cosθ}{1 – cosθ}\) = cosecθ + cotθ
Solution:
L.H.S. =\(\sqrt\frac{1 + cosθ}{1 – cosθ}\)
= \(\sqrt{\frac{1 + cosθ}{1− cosθ}× \frac{1 + cosθ}{1− cosθ}}\)
= \(\sqrt\frac{(1 + cosθ)^2}{1− cos^2θ}\)
= \(\sqrt\frac{(1 + cosθ)^2}{sin^2θ}\)
= \(\frac{1 + cosθ}{sinθ}\)
= \(\frac{1}{sinθ} + \frac{cosθ}{sinθ}\)
= cosecθ + cotθ
= R.H.S. proved
Express all trigonometric ratios of θ in terms of sinθ.
Solution:
Let, ABC be a right angled triangle where ∠B = 90° and ∠C = θ = k
Let, sinθ = k
Then,
or, sinθ = \(\frac{k}{1}\) = \(\frac{p}{h}\)
∴ p = k, h = 1
Now, from right angled ΔABC,
or, b = \(\sqrt{h^2 − p^2}\)
or, b = \(\sqrt{1 − k^2}\)
or, b = \(\sqrt{1− sin^2θ}\)
Then,
cosecθ = \(\frac{h}{p}\) = \(\frac{1}{k}\) = \(\frac{1}{sinθ}\)
cosθ = \(\frac{b}{h}\) = \(\sqrt\frac{1− sin^2θ}{1}\) = \(\sqrt{1−sin^2θ}\)
secθ = \(\frac{h}{b}\) = \(\frac{1}{\sqrt{1− k^2}}\)
tanθ = \(\frac{p}{b}\) = \(\frac{k}{\sqrt{1− k^2}}\) = \(\frac{sinθ}{\sqrt{1− sin^2θ}}\)
cotθ = \(\frac{b}{p}\) = \(\frac{\sqrt{1− sin^2θ}}{sinθ}\)
Find the values of other trigonometric ratios when cosα = \(\frac{5}{13}\)
Solutions:
Here,
cosα = \(\frac{5}{13}\) = \(\frac{b}{h}\)
Then,
b = 5, h = 13, p= ?
By using Pythagoras theorem, we have,
or, p2= h2− b2
or, p = \(\sqrt{h^2 − b^2}\)
or, p = \(\sqrt{13^2 − 5^2}\)
or, p = \(\sqrt{169 − 25}\)
or, p = \(\sqrt{144}\)
∴ p = 12
Now,
secα = \(\frac{h}{b}\) = \(\frac{13}{5}\)
sinα = \(\frac{p}{h}\) = \(\frac{12}{13}\)
cosecα = \(\frac{h}{p}\) = \(\frac{13}{12}\)
tanα = \(\frac{p}{b}\) = \(\frac{12}{5}\)
cotα = \(\frac{b}{p}\) = \(\frac{5}{12}\)
If sinθ − cosθ = 0, find the values of cosecθ, sinθ and cosθ.
Solution:
Here,
or, sinθ − cosθ = 0
or, sinθ = cosθ
or, tanθ = 1
We have,
tanθ = \(\frac{p}{b}\) = \(\frac{1}{1}\)
Then,
p = 1, b = 1
By Pythagoras theorem,
or, h2 = p2 + b2
or, h = \(\sqrt{p^2 + b^2}\)
or, h = \(\sqrt{1^2 +1^2}\)
or, h = \(\sqrt{1 + 1}\)
or, h = \(\sqrt{2}\)
∴ h = \(\sqrt{2}\)
Now,
cosecθ = \(\frac{h}{p}\) = \(\frac{\sqrt{2}}{1}\) = \(\sqrt{2}\)
sinθ = \(\frac{p}{h}\) = \(\frac{1}{\sqrt{2}}\)
If sinθ = \(\frac{m}{n}\), proved that \(\sqrt{n^2 − m^2}\) tanθ = m
Solution:
Here,
or, sinθ = \(\frac{m}{n}\) = \(\frac{p}{h}\)
Then,
p = m, h = n
We have,
or, b2 = h2− p2
or, b2 = n2− m2
or, b = \(\sqrt{n^2 − m^2}\)
Now,
or, tanθ = \(\frac{p}{b}\)
or, tanθ = \(\frac{m}{\sqrt{n^2− m^2}}\)
or, \(\sqrt{n^2− m^2}\) tanθ = m
\(\therefore\) L.H.S = R.H.S proved
If 3cotθ = 4, find the value of \(\frac{3cosθ + 2sinθ}{3cosθ − 2sinθ}\)
Solution:
Here,
or, 3cotθ = 4
We have,
or, cotθ = \(\frac{b}{p}\) = \(\frac{4}{3}\)
Then,
b = 4, p = 3, h = ?
By Pythagoras theorem,
or, h2 = p2 + b2
or, h2 = 32 + 42
or, h2 = 9 + 16
or, h2 = \(\sqrt{25}\)
∴ h = 5
Now,
= \(\frac{3cosθ + 2sinθ}{3cosθ− 2sinθ}\)
= {3 \((\frac{b}{h}) + 2 (\frac{p}{h})\)}÷ {3 \((\frac{b}{h})− 2 (\frac{p}{h})\)}
= (3× \(\frac{4}{5}\) + 2× \(\frac{3}{5}\))÷ (3× \(\frac{4}{5}\)− 2× \(\frac{3}{5}\))
= (\(\frac{12}{5} + \frac{6}{5}\))÷ (\(\frac{12}{5}− \frac{6}{5}\))
= \(\frac{18}{5}\)÷ \(\frac{6}{5}\)
= \(\frac{18}{5}\)× \(\frac{5}{6}\)
= 3
© 2019-20 Kullabs. All Rights Reserved.