Subject: Optional Mathematics
If A is an angle, then 2A, 3A, 4A, 5A, etc. are called multiple angles of A.
Example for Trigonometric ratios of Multiple Angles
If A is an angle, then 2A, 3A, 4A, 5A, etc. are called multiple angles of A. In this section we will discuss about the trigonometric ratios of angles 2A and 3A in terms of A.
(a) sin2A = sin(A + A) = sinA. cosA + cosA. sinA = 2sinA. cosA
(b) sin2A = 2sinA. cosA = \(\frac{2sinA. cosA}{1}\) =\(\frac{2sinA. cosA}{cos^{2}A + sin^{2}A}\) =\(\frac{\frac{2sinA. cosA}{cos^2A}}{\frac{cos^2A}{cos^2A} + \frac{sin^2A}{cos^2A}}\) = \(\frac{2tanA}{1 + tan^2A}\)
(c) sin2A =\(\frac{2tanA}{1 + tan^2 A}\) =\(\frac{\frac{2}{cotA}}{1 +\frac{1}{cot^2 A}}\) =\(\frac{2}{cotA}\)x\(\frac{cot^2A}{1 + cot^2 A}\) =\(\frac{2cotA}{1 + cot^2 A}\)
(d) cos2A = cos(A + A) = cosA. cosA - sinA. sinA = cos2A - sin2A
(e) cos2A = cos2A - sin2A = 1 - sin2A - sin2A = 1 - 2sin2A
(f) cos2A = cos2A - sin2A = cos2A - (1 - cos2A) = 2cos2A - 1
(g) cos2A = cos2A - sin2A =\(\frac{cos^2A - sin^2A}{1}\) =\(\frac{cos^2A - sin^2A}{cos^2A + sin^2A}\) =\(\frac{\frac{cos^2A}{cos^2A} - \frac{sin^2A}{cos^2A}}{\frac{cos^2A}{cos^2A} + \frac{sin^2A}{cos^2A}}\) =\(\frac{1 - tan^2A}{1 + tan^2A}\)
(h) cos2A =\(\frac{1 - tan^2A}{1 + tan^2A}\) =\(\frac{1 - \frac{1}{cot^2A}}{1 +\frac{1}{cot^2A}}\) =\(\frac{cot^2A - 1}{cot^2A + 1}\)
(i) tan2A = tan(A + B) =\(\frac{tanA + tanA}{1 - tanA. tanA}\) =\(\frac{2tanA}{1 - tan^2A}\)
(j) tan2A =\(\frac{2tanA}{1 - tan^2A}\) =\(\frac{\frac{2}{cotA}}{1 -\frac{1}{cot^2A}}\) =\(\frac{2}{cotA}\) x \(\frac{cot^2A}{cot^2A - 1}\)
(k) cot2A = cot (A + A) =\(\frac{cotA. cotA - 1}{cotA + cotA}\) =\(\frac{cot^2A - 1}{2cotA}\)
(l) cot2A =\(\frac{cot^2A - 1}{2cotA}\) =\(\frac{\frac{1}{tan^2A} - 1}{\frac{2}{tanA}}\) =\(\frac{1 - tan^2A}{tan^2A}\) x \(\frac{1 - tan^2 A}{2 tanA}\) =\(\frac{1 - tan^2 A}{2 tanA}\)
Some useful results
(a) 1 + cos2A = 1 + cos2A - sin2A = 1 - sin2A + cos2A = cos2A + cos2A = 2cos2A
(b) 1 - cos2A = 1 - (cos2A - sin2A) = 1 - cos2A + sin2A = sin2A + sin2A = 2sin2A
(c) 1 + sin2A = cos2A + sin2A + 2 sinA .cosA = cos2A + 2 cosA . sinA + sin2A = (cosA + sinA)2
(d) 1 - sin2A = cos2A + sin2A - 2sinA .cosA = cos2A - 2 cosA .sinA + sin2A = (cosA - sinA)2
Trigonometric ratios of 3A in terms of A
(a) sin3A
= sin(2A + A)
= sin2A. cosA + cos2A. sinA
= 2 sinA . cosA. cosA + (1 - 2sin2A). sinA
= 2 sinA (1 - sin2A) + sinA - 2sin\(^3\)A
= 2sinA. 2sin\(^3\)A + sinA - 2 sin\(^3\)A
= 3 sinA - 4 sin\(^3\)A
(b) cos3A
= cos (2a + A)
= cos2A. cosA - sin2A. sinA
= (2cos2A - 1) cosA - 2sinA. cosA. sinA
= 2cos\(^3\)A - cosA - 2cosA (1 - cos2A)
= 2 cos\(^3\)A - cosA - 2cosA + 2cos\(^3\)A
= 4 cos\(^3\)A - 3 cosA.
(c) tan3A
= tan( 2A + A)
=\(\frac{tan2A + tanA}{1 - tan2A. tanA}\)
=\(\frac{\frac{2 tan A}{1 - tan^2 A} + tanA}{1 -\frac{2tan A}{1 - tan^2 A}. tanA}\)
=\(\frac{2 tan A + tan A - tan^3 A}{1 - tan^2 A - 2 tan^2 A}\)
=\(\frac{3 tan A - tan^3 A}{1 - 3 tan^2 A}\)
Geometrical proof of 2A formulae :
Let, O be the centre of the circle ABC and AB be a diameter. Let ∠CAB = A.
Then, ∠COB = 2A
Here, ∠ACB = 900. Let CM is perpendicular to AB.
Then, ∠ACM = 900 - A and hence. ∠BCM = A.
Now,
sin2A =\(\frac{CM}{OC}\)
=\(\frac{2CM}{2OC}\)
=\(\frac{2CM}{AB}\)
= 2 \(\frac{CM}{AC}\). \(\frac{AC}{AB}\)
= 2sinA. cosA
And,
cos2A =\(\frac{OM}{OC}\)
=\(\frac{2OM}{2OC}\)
=\(\frac{2OM}{AB}\)
= \(\frac{(AO + OM) - (AO - OM)}{AB}\)
=\(\frac{AM - BM}{AB}\)
= \(\frac{AM}{AB}\) - \(\frac{BM}{AB}\)
= \(\frac{AM}{AC}\). \(\frac{AC}{AB}\) - \(\frac{BM}{BC}\). \(\frac{BC}{AB}\)
= cosA. cosA - sinA. sinA
= cos2A - sin2A
Again,
tan2A = \(\frac{CM}{OM}\)
= \(\frac{2CM}{2OM}\)
=\(\frac{2CM}{(AO + OM) - (AO -OM)}\)
= \(\frac{2CM}{(AO + OM) - (BO - OM)}\)
=\(\frac{2CM}{AM - BM}\)
=\(\frac{\frac{2CM}{AM}}{\frac{AM}{AM} - \frac{BM}{AM}}\)
=\(\frac{\frac{2CM}{AM}}{1 -\frac{BM}{CM}× \frac{CM}{AM}}\)
=\(\frac{2 tan A}{1 - tan A. tan A}\)
=\(\frac{2 tan A}{1 - tan^2 A}\)
Multiple angles formulae |
|
sin2A = 2sinA. cosA | tan2A =\(\frac{2cot A}{cot^2 A - 1}\) |
sin2A =\(\frac{2tan A}{1 + tan^2 A}\) | cot2A =\(\frac{cot^2 A - 1}{2cot A}\) |
sin2A =\(\frac{2cot A}{1 + cot^2 A}\) | cot2A =\(\frac{1 - tan^2 A}{2tan A}\) |
cos2A = cos2A - sin2A | 1 + cos2A = 2cos2A |
cos2A = 1 - 2sin2A | 1 - cos2A = 2 sin2A |
cos2A = 2cos2A - 1 | 1 + sin2A = (cosA + sinA)2 |
cos2A =\(\frac{1 - tan^2 A}{1 + ttan^2 A}\) | 1 - sin2A = (cosA - sinA)2 |
cos2A =\(\frac{cot^2 A - 1}{cot^2 A + 1}\) | sin3A = 3 sinA - 4 sin \(^3\) A |
tan2A =\(\frac{2 tan A}{1 - tan^2 A}\) | cos3A = 4 cos\(^3\)A - 3cos A |
tan3 A =\(\frac{3 tan A - tan^3 A}{1 - 3tan^2 A}\) |
sin2A = 2sinA. cosA | tan2A =\(\frac{2cot A}{cot^2 A - 1}\) |
sin2A =\(\frac{2tan A}{1 + tan^2 A}\) | cot2A =\(\frac{cot^2 A - 1}{2cot A}\) |
sin2A =\(\frac{2cot A}{1 + cot^2 A}\) | cot2A =\(\frac{1 - tan^2 A}{2tan A}\) |
cos2A = cos2A - sin2A | 1 + cos2A = 2cos2A |
cos2A = 1 - 2sin2A | 1 - cos2A = 2 sin2A |
cos2A = 2cos2A - 1 | 1 + sin2A = (cosA + sinA)2 |
cos2A =\(\frac{1 - tan^2 A}{1 + ttan^2 A}\) | 1 - sin2A = (cosA - sinA)2 |
cos2A =\(\frac{cot^2 A - 1}{cot^2 A + 1}\) | sin3A = 3 sinA - 4 sin \(^3\) A |
tan2A =\(\frac{2 tan A}{1 - tan^2 A}\) | cos3A = 4 cos\(^3\)A - 3cos A |
tan3 A =\(\frac{3 tan A - tan^3 A}{1 - 3tan^2 A}\) |
Prove that:
\(\frac {sin\theta + sin2\theta}{1 + cos\theta + cos2\theta}\) = tan\(\theta\)
L.H.S.
=\(\frac {sin\theta + sin2\theta}{1 + cos\theta + cos2\theta}\)
= \(\frac {sin\theta + 2sin\theta cos\theta}{1 + cos\theta + 2cos^2\theta - 1}\)
= \(\frac {sin\theta (1 + 2cos\theta)}{cos\theta (1 + 2cos\theta)}\)
= \(\frac {sin\theta}{cos\theta}\)
= tan\(\theta\)
Hence, L.H.S. = R.H.S. proved
Express sin3A cos2A in terms of sin A.
Here,
sin3A cos2A
= (3 sinA - 4 sin3A) (1 - sin2A)
= 3 sinA - 4 sin3A - 3 sin3A + 4 sin5A
= 4 sin5A - 7 sin3A + 3 sinA Ans
Prove that:
cos 2A = \(\frac {1 - tan^2A}{1 + tan^2A}\)
Here,
L.H.S.
= cos 2A
= \(\frac {cos^2A - sin^2A}{1}\)
= \(\frac {cos^2A - sin^2A}{cos^2A + sin^2A}\)
=\(\frac {{\frac {cos^2A}{sin^2A}} - {\frac {sin^2A}{cos^2A}}}{{\frac {cos^2A}{cos^2A}} + {\frac {sin^2A}{cos^2A}}}\)
= \(\frac {1 - tan^2A}{1 + tan^2A}\)
Hence, L.H.S. = R.H.S. Proved
If tan A = \(\frac 34\), find the value of sin 2A and cos 2A.
Here,
tan A = \(\frac 34\)
sin 2A
= \(\frac {2tan A}{1 + tan^2A}\)
= \(\frac {2 × \frac 34}{1 + (\frac {3}{4})^2}\)
= \(\frac {\frac 32}{1 + \frac {9}{16}}\)
= \(\frac 32\)× \(\frac {16}{25}\)
= \(\frac {24}{25}\) Ans
cos 2A
= \(\frac {1 - tan^2A}{1 + tan^2A}\)
= \(\frac{1 -(\frac {3}{4})^2}{1 + (\frac {3}{4})^2}\)
= \(\frac {1 - \frac 9{16}}{1 +\frac 9{16}}\)
= \(\frac {\frac {16 - 9}{16}}{\frac {16 + 9}{16}}\)
= \(\frac {7}{16}\)× \(\frac {16}{25}\)
= \(\frac 7{25}\) Ans
Prove that:
\(\frac {sin 2A}{1 + cos 2A}\) = tan A
L.H.S.
=\(\frac {sin 2A}{1 + cos 2A}\)
= \(\frac {2 sin A cos A}{2 cos^2A}\)
= \(\frac {sin A}{cos A}\)
= tan A
Hence, L.H.S. = R.H.S. Proved
If cos\(\alpha\) = \(\frac {\sqrt 3}{2}\), find the value of sin3\(\alpha\) and cos3\(\alpha\).
Here,
cos\(\alpha\) = \(\frac {\sqrt 3}{2}\)
sin\(\alpha\)
= \(\sqrt {1 - cos^2\alpha}\)
= \(\sqrt {1 - (\frac {\sqrt 3}{2})^2}\)
=\(\sqrt {1 - \frac 34}\)
=\(\sqrt {\frac {4 - 3}{4}}\)
=\(\sqrt {\frac 14}\)
= \(\frac 12\)
sin3\(\alpha\)
= 3 sin\(\alpha\) - 4 sin3\(\alpha\)
= 3× \(\frac 12\) - 4× (\(\frac 12\))3
= \(\frac 32\) - \(\frac 48\)
= \(\frac 32\) - \(\frac 12\)
= \(\frac {3 - 1}{2}\)
= \(\frac 22\)
= 1 Ans
Again,
cos 3\(\alpha\)
= 4 cos2\(\alpha\) - 3 cos\(\alpha\)
= 4 (\(\frac {\sqrt 3}{2}\))3- 3× \(\frac {\sqrt 3}{2}\)
= \(\frac {12\sqrt 3}{8}\) - \(\frac {3\sqrt 3}{2}\)
= \(\frac {3\sqrt 3}{2}\) - \(\frac {3\sqrt 3}{2}\)
= 0 Ans
Prove that:
4 (cos310° + sin320°) = 3 (cos 10° + sin 20°)
L.H.S.
=4 (cos310° + sin320°)
=4cos310° + 4sin320°
= [cos 3(10°) + 3 cos 10°] + [3 sin20° - sin 3(20°)]
= cos 30° + 3 cos 10° + 3 sin 20° - sin 60°
= \(\frac {\sqrt 3}{2}\) + 3 (cos 10° + sin 20°) - \(\frac {\sqrt 3}{2}\)
=3 (cos 10° + sin 20°)
Hence, L.H.S. = R.H.S. Proved
If cos\(\theta\) = \(\frac {12}{13}\) and sin\(\alpha\) = \(\frac 45\), find the values of sin 2\(\theta\) and cos 2\(\alpha\).
Here,
cos\(\theta\) = \(\frac {12}{13}\) and sin\(\alpha\) = \(\frac 45\)
sin\(\theta\)
= \(\sqrt {1 - cos^2\theta}\)
= \(\sqrt {1 - (\frac {12}{13})^2}\)
= \(\sqrt {\frac {169 - 144}{169}}\)
= \(\sqrt {\frac {25}{169}}\)
= \(\frac 5{13}\)
cos\(\alpha\)
= \(\sqrt {1 - sin^2\alpha}\)
= \(\sqrt {1 - (\frac {4}{5})^2}\)
= \(\sqrt {\frac {25 - 16}{25}}\)
= \(\sqrt {\frac 9{25}}\)
= \(\frac 35\)
∴ sin 2\(\theta\) = 2 sin\(\theta\) cos\(\theta\) = 2× \(\frac 5{13}\)× \(\frac {12}{13}\) = \(\frac {120}{169}\) Ans
∴ cos 2\(\alpha\) = 2 cos2\(\alpha\) - 1 = 2× \(\frac 35\)× \(\frac 35\) - 1 = \(\frac {18 - 25}{25}\) = -\(\frac 7{25}\) Ans
Prove that:
tan 4\(\theta\) - tan 3\(\theta\) - tan\(\theta\) = tan 4\(\theta\) . tan 3\(\theta\) . tan\(\theta\)
Here,
3\(\theta\) + \(\theta\) = 4\(\theta\)
Putting tan on both,
tan (3\(\theta\) + \(\theta\)) = tan 4\(\theta\)
or, \(\frac {tan 3\theta + tan\theta}{1 - tan 3\theta tan\theta}\) = tan 4\(\theta\)
or, tan 3\(\theta\) + tan\(\theta\) = tan 4\(\theta\) - tan\(\theta\) tan 3\(\theta\) tan 4\(\theta\)
or,tan\(\theta\) tan 3\(\theta\) tan 4\(\theta\) =tan 4\(\theta\) -tan 3\(\theta\) -tan\(\theta\)
Hence, L.H.S. = R.H.S. proved
Prove that:
\(\frac {sin 5\theta}{sin \theta}\) - \(\frac {cos 5\theta}{cos \theta}\) = 4 cos 2\(\theta\)
L.H.S.
=\(\frac {sin 5\theta}{sin \theta}\) - \(\frac {cos 5\theta}{cos \theta}\)
= \(\frac {sin 5\theta cos \theta - cos 5\theta sin \theta}{sin \theta cos \theta}\)
= \(\frac {sin (5\theta - \theta)}{sin\theta cos\theta}\)
= \(\frac {sin 4\theta}{sin\theta cos\theta}\)
= \(\frac {sin 2(2\theta)}{sin\theta cos\theta}\)
= \(\frac {2 sin 2\theta cos 2\theta}{sin\theta cos\theta}\)
= \(\frac {2 × 2 sin\theta cos\theta cos2\theta}{sin\theta cos\theta}\)
= 4 cos 2\(\theta\)
Hence, L.H.S. = R.H.S. Proved
Prove that:
\(\frac {cos^3A + sin^3A}{cosA + sinA}\) = 1 - \(\frac 12\)sin 2A
L.H.S.
= \(\frac {cos^3A + sin^3A}{cosA + sinA}\)
= \(\frac {(cosA + sinA)(cos^2A + sin^2A - sinA cosA)}{cosA + sinA}\)
= 1 - \(\frac {2 sinA cosA}{2}\)
= 1 - \(\frac 12\)sin 2A
Hence, L.H.S. = R.H.S. Proved
Prove that:
\(\frac 1{tan3A - tanA}\) - \(\frac 1{cot3A - cotA}\) = cot2A
L.H.S.
=\(\frac 1{tan3A - tanA}\) - \(\frac 1{cot3A - cotA}\)
=\(\frac 1{tan3A - tanA}\) - \(\frac 1{{\frac 1{tan3A}} - {\frac 1{tanA}}}\)
=\(\frac 1{tan3A - tanA}\) - \(\frac {\frac 1{tanA - tan3A}}{tan3A tanA}\)
=\(\frac 1{tan3A - tanA}\) - \(\frac {tan 3A tanA}{tanA - tan3A}\)
= \(\frac 1{tan3A - tanA}\) +\(\frac {tan 3A tanA}{tan3A - tanA}\)
= \(\frac {1 + tan 3A tanA}{tan3A - tanA}\)
= \(\frac {\frac 1{tan3A - tanA}}{1 + tan3A tanA}\)
= \(\frac 1{cot (3A - A)}\)
= \(\frac 1{cot2A}\)
= tan 2A
Hence, L.H.S. = R.H.S. proved
Prove that:
\(\frac {cos\theta}{cos\theta - sin\theta}\) - \(\frac {cos\theta}{cos\theta + sin\theta}\) = tan 2\(\theta\)
L.H.S.
=\(\frac {cos\theta}{cos\theta - sin\theta}\) -\(\frac {cos\theta}{cos\theta +sin\theta}\)
= \(\frac {cos\theta (cos\theta + sin\theta) - cos\theta (cos\theta - sin\theta)}{(cos\theta - sin\theta) (cos\theta + sin\theta)}\)
= \(\frac {cos^2\theta + cos\theta sin\theta - cos^2\theta + cos\theta sin\theta}{cos^2\theta - sin^2\theta}\)
= \(\frac {2 sin\theta cos\theta}{cos^2\theta - sin^2\theta}\)
= \(\frac {sin 2\theta}{cos 2\theta}\)
= tan 2\(\theta\)
Hence, L.H.S. = R.H.S. Proved
Prove that:
\(\frac {1 - cos 2A + sin2A}{1 + cos 2A + sin2A}\) = tanA
L.H.S.
=\(\frac {1 - cos 2A + sin2A}{1 + cos 2A + sin2A}\)
= \(\frac {2sin^2A + 2sinAcosA}{2cos^2A + 2sinAcosA}\) [\(\because\) 1 - cos2A = 2sin2A and 1 + cos2A = 2cos2A]
= \(\frac {2sin A (sinA + cosA)}{2cosA (cosA + sinA)}\)
= tanA
Hence, L.H.S. = R.H.S. proved
Prove that:
\(\frac {1 - tan^2(\frac {π}{4} - \theta)}{1 + tan^2(\frac {π}{4} - \theta)}\) = sin 2\(\theta\)
L.H.S.
=\(\frac {1 - tan^2(\frac {π}{4} - \theta)}{1 + tan^2(\frac {π}{4} - \theta)}\)
= cos 2(\(\frac {π}{4} - \theta)\)
= cos(\(\frac {π}{2} - 2\theta)\)
= sin 2\(\theta\)
hence, L.H.S. = R.H.S. Proved
Prove that:
\(\frac {sin 3A}{sinA}\) - \(\frac {cos 3A}{cosA}\) = 2
L.H.S.
=\(\frac {sin 3A}{sinA}\) - \(\frac {cos 3A}{cosA}\)
= \(\frac {3 sinA - 4 sin^3A}{sinA}\) - \(\frac {4 cos^3A - 3 cosA}{cosA}\)
= \(\frac {sinA (3 - 4 sin^2A)}{sinA}\) - \(\frac {cosA (4 cos^2A - 3)}{cosA}\)
= 3 - 4 (1 - cos2A) - 4 cos2A + 3
= 3 - 4 + 4 cos2A - 4 cos2A + 3
= 6 - 4
= 2
Hence, L.H.S = R.H.S. Proved
Prove that:
4 cosec 2A . cot 2A = cosec2A - sec2A
L.H.S.
=4 cosec 2A . cot 2A
= 4(\(\frac 1{sin2A})\) . \(\frac {cos 2A}{sin 2A}\)
= \(\frac {4 (cos^2A - sin^2A)}{2 sinA cosA . 2 sinA cosA}\)
= \(\frac {cos^2A - sin^2A}{sin^2A cos^2A}\)
= \(\frac {cos^2A}{sin^2A cos^2A}\) - \(\frac {sin^2A}{sin^2A cos^2A}\)
= \(\frac {1}{sin^2A}\) - \(\frac {1}{cos^2A}\)
= cosec2A - sec2A
Hence, L.H.S. = R.H.S. proved
Find the value of tan 3A if cosA = \(\frac {15}{17}\).
Here,
cosA = \(\frac {15}{17}\)
cosA
= \(\sqrt {1 - cos^2A}\)
= \(\sqrt {1 - (\frac {15}{17}})^2\)
= \(\sqrt {1 - \frac {225}{289}}\)
= \(\sqrt {\frac {289 - 225}{289}}\)
= \(\sqrt {\frac {64}{289}}\)
= \(\frac 8{17}\)
∴ tanA = \(\frac {sinA}{cosA}\) = \(\frac {\frac {8}{17}}{\frac {15}{17}}\) = \(\frac 8{15}\)
Now,
tan 3A
= \(\frac {3 tanA - tan^3A}{1 - 3 tan^2A}\)
= \(\frac {3 × \frac 8{15} - (\frac 8{15})^3}{1 - 3 ×(\frac 8{15})^2}\)
= \(\frac {\frac {24}{15} - \frac {512}{3375}}{1 - \frac {192}{225}}\)
= \(\frac {\frac {5400 - 512}{3375}}{\frac {225 - 192}{225}}\)
= \(\frac {\frac {4888}{3375}}{\frac {33}{225}}\)
= \(\frac {4888}{3375}\)× \(\frac {225}{33}\)
= \(\frac {4888}{15 × 33}\)
= \(\frac {4888}{495}\) Ans
Prove that:
\(\frac 1{tan 3A + tanA}\) - \(\frac 1{cot 3A + cotA}\) = cot 4A
L.H.S.
=\(\frac 1{tan 3A + tanA}\) - \(\frac 1{cot 3A + cotA}\)
= \(\frac 1{tan 3A + tanA}\) - \(\frac 1{{\frac 1{tan 3A}} + {\frac 1{tanA}}}\)
= \(\frac 1{tan 3A + tanA}\) - \(\frac {\frac 1{tanA + tan3A}}{tan3A tanA}\)
= \(\frac 1{tan 3A + tanA}\) - \(\frac {tan 3A tanA}{tan 3A + tanA}\)
= \(\frac {1 - tan 3A tanA}{tan 3A + tanA}\)
= \(\frac {\frac 1{tan 3A + tanA}}{1 - tan3A tanA}\)
= \(\frac 1{tan (3A + A)}\)
= \(\frac 1{tan 4A}\)
= cot 4A
Hence, L.H.S. = R.H.S. Proved
Prove that:
\(\frac {1 + sin 2A}{cos 2A}\) = \(\frac {cosA + sinA}{cosA - sinA}\)
L.H.S.
=\(\frac {1 + sin 2A}{cos 2A}\)
= \(\frac {sin^2A + cos^2A + 2 sinA cosA}{cos^2A - sin^2A}\)
= \(\frac {(cosA + sinA)^2}{(cosA + sinA) (cosA - sinA)}\)
= \(\frac {cosA + sinA}{cosA - sinA}\)
Hence, L.H.S. = R.H.S. Proved
Find the exact value of sin 2\(\theta\) if tan \(\theta\) = \(\frac 43\).
Here,
sin 2\(\theta\)
= \(\frac {2 tan\theta}{1 + tan^2\theta}\)
= \(\frac {2 × \frac 43}{1 + (\frac 43)^2}\)
= \(\frac {\frac 83}{1 + \frac {16}{9}}\)
= \(\frac {\frac83}{\frac {9 + 16}{9}}\)
= \(\frac {\frac 83}{\frac {25}9}\)
= \(\frac 83\)× \(\frac 9{25}\)
= \(\frac {24}{25}\) Ans
Find the value of sin 2A if cosA = \(\frac 35\).
Here,
cos A = \(\frac 35\)
sinA
= \(\sqrt {1 - cos^2 A}\)
= \(\sqrt {1 - (\frac 35)^2}\)
= \(\sqrt {1 - \frac 9{25}}\)
= \(\sqrt {\frac {25 - 9}{25}}\)
= \(\sqrt {\frac {16}{25}}\)
= \(\frac 45\)
Now,
sin 2A
= 2 sinA cosA
= 2× \(\frac 45\)× \(\frac 35\)
= \(\frac {24}{25}\) Ans
Prove that:
sin4A = \(\frac 18\)(3 - 4 cos 2A + cos 4A)
L.H.S.
= sin4A
= (sin2A)2
=[\(\frac 12\) (1 - cos 2A)]2
= \(\frac 14\) [1 - 2 cos 2A + cos2A]
= \(\frac14\) [1 - 2 cos2A + (\(\frac {1 + cos4A}{2}\))]
= \(\frac 14\) [\(\frac {2 - 4 cos2A + 1 + cos4A}2\)]
= \(\frac 18\)(3 - 4 cos 2A + cos 4A)
Hence, L.H.S. = R.H.S. Proved
Prove that:
cosec 2A + cot 4A = cotA - cosec 4A
Here,
cosec 2A + cot 4A = cotA - cosec 4A
or, cot 4A + cosec 4A = cotA - cosec 2A
L.H.S.
= cot 4A + cosec 4A
= \(\frac {cos 4A}{sin 4A}\) + \(\frac 1{sin 4A}\)
= \(\frac {cos 4A + 1}{sin 4A}\)
= \(\frac {2 cos^22A - 1 + 1}{2 sin 2A cos 2A}\)
= \(\frac {2 cos^22A}{2 sin 2A cos 2A}\)
= \(\frac {cos 2A}{sin 2A}\)
= \(\frac {2 cos^2A - 1}{2 sinA cosA}\)
= \(\frac {2 cos^2A}{2 sinA cosA}\) - \(\frac 1{2 sinA cosA}\)
= cotA - \(\frac 1{sin 2A}\)
= cotA - cosec 2A
Hence, L.H.S. = R.H.S. Proved
Prove that:
\(\frac {\sqrt 3}{sin 20°}\) - \(\frac 1{cos 20°}\) = 4
L.H.S.
=\(\frac {\sqrt 3}{sin 20°}\) - \(\frac 1{cos 20°}\)
= \(\frac {\sqrt 3 cos 20° - sin 20°}{sin 20° cos 20°}\)
= \(\frac {2 (\frac {\sqrt 3}{2} cos 20° - \frac 12 sin 20°)}{sin 20° cos 20°}\)
= \(\frac {2 × 2 (sin 60° cos 20° - cos 60° sin 20°)}{2 sin 20° cos 20°}\)
= \(\frac {4 [sin (60° - 20°)]}{sin 2 × 20°}\)
= \(\frac {4 sin 40°}{sin 40°}\)
= 4
Hence, L.H.S. = R.H.S. Proved
Prove that:
\(\frac 1{sin 10°}\) - \(\frac {\sqrt 3}{cos 10°}\) = 4
L.H.S.
=\(\frac {1}{sin 10°}\) - \(\frac {\sqrt 3}{cos 10°}\)
= \(\frac {cos 10° - \sqrt 3 sin 10°}{sin 10° cos 10°}\)
= \(\frac {2 (\frac {1}{2} cos 10° - \frac {\sqrt 3}2 sin 10°)}{sin 10° cos 10°}\)
= \(\frac {2 × 2 (sin 30° cos10° - cos 30° sin 10°)}{2 sin 10° cos 10°}\)
= \(\frac {4 [sin (30° - 10°)]}{sin 2 × 10°}\)
= \(\frac {4 sin 20°}{sin 20°}\)
= 4
Hence, L.H.S. = R.H.S. Proved
Prove that:
cos 5A = 16 cos 5A - 20 cos3A + 5 cosA
L.H.S.
= cos 5A
= cos (2A + 3A)
= cos 2A cos 3A - sin 2A sin 3A
= (2 cos2A - 1) (4 cos3A - 3 cosA) - 2 sinA cosA (3 sinA - 4 sin3A)
= 8 cos5A - 6 cos3A - 4 cos3A + 3 cosA - 6 sin2A cosA + 8 sin4A cosA
= 8 cos5A - 10 cos3A + 3 cosA - 6 (1 - cos2A) cosA + 8 (1 - cos2A)2 cosA
= 8 cos5A - 10 cos3A + 3 cosA - 6 cosA + 6 cos3A + 8 cosA (1 - 2 cos2A + cos4A)
= 8 cos5A - 4 cos3A - 3 cosA + 8 cosA - 16 cos3A + 8 cos5A
=16 cos5A - 20 cos3A + 5 cosA
Hence, L.H.S. = R.H.S. Proved
Prove that:
tan (\(\frac {\pi}{4} + A\)) + tan (\(\frac {\pi}{4} - A\)) = 2 sec 2A
L.H.S.
=tan (\(\frac {\pi}{4} + A\)) + tan(\(\frac {\pi}{4} -A\))
= \(\frac {tan \frac {\pi}{4} + tanA}{1 - tan {\frac {\pi}{4}} tanA}\) +\(\frac {tan \frac {\pi}{4} -tanA}{1 +tan {\frac {\pi}{4}} tanA}\)
= \(\frac {1 + tanA}{1 - 1 × tanA}\) + \(\frac {1 -tanA}{1 +1 × tanA}\)
= \(\frac {(1 + tanA)^2 + (1 - tan A)^2}{(1 - tanA) (1 + tanA)}\)
= \(\frac {1 + 2 tanA + tan^2A + 1 - 2 tanA + tan^2A}{1 - tan^2A}\)
= \(\frac {2 + 2 tan^2A}{1 - tan^A}\)
= \(\frac {2 (1 + tan^2A)}{1 - tan^2A}\)
= \(\frac 2{\frac {1 - tan^2A}{1 + tan^2A}}\)
= \(\frac 2{cos 2A}\)
= 2 sec 2A
Hence, L.H.S. = R.H.S. Proved
If tan\(\theta\) = \(\frac 56\) and tan\(\beta\) = \(\frac 1{11}\), show that:
(\(\theta\) + \(\beta\)) = \(\frac {\pi^c}{4}\)
Here,
tan\(\theta\) = \(\frac 56\) and tan\(\beta\) = \(\frac 1{11}\)
tan (\(\theta\) + \(\beta\)) = \(\frac {tan \theta + tan \beta}{1 - tan\theta tan\beta}\)
or,tan (\(\theta\) + \(\beta\)) = \(\frac {\frac 56 + \frac 1{11}}{1 - \frac 56 × \frac 1{11}}\)
or, tan (\(\theta\) + \(\beta\)) = \(\frac {\frac {5 × 11 + 1 × 6}{66}}{\frac {66 - 5}{66}}\)
or,tan (\(\theta\) + \(\beta\)) = \(\frac {55 + 6}{66}\)× \(\frac {66}{61}\)
or,tan (\(\theta\) + \(\beta\)) = \(\frac {61}{66}\)× \(\frac {66}{61}\)
or,tan (\(\theta\) + \(\beta\)) = 1
or,tan (\(\theta\) + \(\beta\)) = tan 45°
or,tan (\(\theta\) + \(\beta\)) = tan\(\frac {\pi^c}{4}\)
∴ (\(\theta\) + \(\beta\)) =\(\frac {\pi^c}{4}\)
Hence, L.H.S. = R.H.S. Proved
Prove that:
cos6\(\theta\) + sin6\(\theta\) = \(\frac 14\)(1 + 3 cos2 2\(\theta\))
L.H.S.
=cos6\(\theta\) + sin6\(\theta\)
= (cos2\(\theta\))3 + (sin2\(\theta\))3
= (cos2\(\theta\) + sin2\(\theta\)) (cos4\(\theta\) - cos2\(\theta\) sin2\(\theta\) + sin4\(\theta\))
= {(cos2\(\theta\))2 - cos2\(\theta\) sin2\(\theta\) + (sin2\(\theta\))2}
= {(cos2\(\theta\) + sin2\(\theta\))2 - 2 cos2\(\theta\) sin2\(\theta\) - cos2\(\theta\) sin2\(\theta\)}
= 1 - 3 sin2\(\theta\) cos2\(\theta\)
= 1 - 3 . \(\frac 44\) (sin2\(\theta\) cos2\(\theta\))
= 1 - \(\frac 34\) (4 sin2\(\theta\) cos2\(\theta\))
= 1 - \(\frac 34\) (2 sin\(\theta\) cos\(\theta\))2
= 1 - \(\frac 34\) (sin 2\(\theta\))2
= 1 - \(\frac 34\) (sin22\(\theta\))
= 1 - \(\frac 34\) (1 - cos22\(\theta\))
= \(\frac {4 - 3 + 3 cos^22\theta}{4}\)
= \(\frac {1 + 3 cos^22\theta}{4}\)
= \(\frac 14\) (1 + 3 cos22\(\theta\))
Hence, L.H.S. = R.H.S. Proved
Prove that:
\(\frac {2 cos 8\theta + 1}{2 cos\theta + 1}\) = (2 cos\(\theta\) - 1) (2 cos 2\(\theta\) - 1) (2 cos 4\(\theta\) - 1)
L.H.S.
=\(\frac {2 cos 8\theta + 1}{2 cos\theta + 1}\)
=\(\frac {2 cos 2 × 4\theta + 1}{2 cos\theta + 1}\)
=\(\frac {2 (2cos^2 4\theta - 1) + 1}{2cos\theta + 1}\)
=\(\frac {4 cos^2 4\theta -2 + 1}{2cos\theta + 1}\)
=\(\frac {4 cos^2 4\theta - 1}{2cos\theta + 1}\)
=\(\frac {(2cos 4\theta)^2 - (1)^2}{2cos\theta + 1}\)
=\(\frac {(2 cos 4\theta + 1)(2 cos 4\theta - 1)}{2cos\theta + 1}\)
=\(\frac {(2 cos 2 × 2\theta + 1)(2 cos 4\theta - 1)}{2cos\theta + 1}\)
=\(\frac {[2 (2cos^2\theta - 1) + 1](2 cos 4\theta - 1)}{2cos\theta + 1}\)
=\(\frac {(4 cos^2\theta - 2 + 1)(2 cos 4\theta - 1)}{2cos\theta + 1}\)
=\(\frac {(4 cos^2\theta - 1)(2 cos 4\theta - 1)}{2cos\theta + 1}\)
=\(\frac {[(2 cos2\theta)^2 - (1)^2](2 cos 4\theta - 1)}{2cos\theta + 1}\)
=\(\frac {(2 cos 2\theta + 1) (2 cos 2\theta - 1) (2 cos 4\theta - 1)}{2cos\theta + 1}\)
=\(\frac {[2 × (2 cos^2\theta - 1) + 1] (2 cos 2\theta - 1) (2 cos 4\theta - 1)}{2cos\theta + 1}\)
=\(\frac {(4 cos^2\theta - 2 + 1) (2 cos 2\theta - 1) (2 cos 4\theta - 1)}{2cos\theta + 1}\)
=\(\frac {(4 cos^2\theta - 1) (2 cos 2\theta - 1) (2 cos 4\theta - 1)}{2cos\theta + 1}\)
=\(\frac {[(2 cos\theta)^2 - (1)^2] (2 cos 2\theta - 1) (2 cos 4\theta - 1)}{2cos\theta + 1}\)
=\(\frac {(2 cos\theta + 1) (2 cos \theta - 1) (2 cos 2\theta - 1) (2 cos 4\theta - 1)}{2cos\theta + 1}\)
=(2 cos\(\theta\) - 1) (2 cos 2\(\theta\) - 1) (2 cos 4\(\theta\) - 1)
Hence, L.H.S. = R.H.S. Proved
Prove that:
cos2A + sin2A cos 2B = cos2B + sin2B cos 2A
L.H.S.
= cos2A + sin2A cos 2B
= cos2A + sin2A(1 - 2 sin2B)
= cos2A + sin2A - 2 sin2A sin2B
= 1 - 2 sin2A sin2B
= 1 - (1 - cos 2A) sin2B
= 1 - sin2B + sin2B cos 2A
= cos2B + sin2B cos 2A
Hence, L.H.S. = R.H.S. Proved
Express cos 4\(\theta\) in terms of sin\(\theta\).
Here,
cos 4\(\theta\)
= cos 2 (2\(\theta\))
= 1 - 2 sin2 (2\(\theta\))
= 1 - 2 (2sin\(\theta\) cos\(\theta\))2
= 1 - 2× 4 sin2\(\theta\) cos2\(\theta\)
= 1 - 8 sin2\(\theta\) (1 - sin2\(\theta\))
= 1 - 8 sin2\(\theta\) + 8 sin4\(\theta\) Ans
If tan2\(\alpha\) = 1 + 2 tan2\(\beta\), show that:
cos 2\(\beta\) = 1 + 2 cos 2\(\alpha\)
Here,
tan2\(\alpha\) = 1 + 2 tan2\(\beta\)
or, \(\frac {1 - cos 2\alpha}{1 + cos 2\alpha}\) = 1 + 2 (\(\frac {1 - cos 2\beta}{1 + cos 2\beta})\)
or,\(\frac {1 - cos 2\alpha}{1 + cos 2\alpha}\) = \(\frac {1 + cos 2\beta + 2 - 2 cos 2\beta}{1 + cos 2\beta}\)
or,\(\frac {1 - cos 2\alpha}{1 + cos 2\alpha}\) = \(\frac {3 - cos 2\beta}{1 + cos 2\beta}\)
or,\(\frac {1 - cos 2\alpha}{1 + cos 2\alpha}\) + 1 = \(\frac {3 - cos 2\beta}{1 + cos 2\beta}\) + 1
or, \(\frac {1 - cos 2\alpha + 1 + cos 2\alpha}{1 + cos 2\alpha}\) = \(\frac {3 - cos 2\beta + 1 + cos 2\beta}{1 + cos 2\beta}\)
or, \(\frac 2{1 + cos 2\alpha}\) = \(\frac 4{1 + cos 2\beta}\)
or, 2 (1 + cos 2\(\beta\)) = 4 (1 + cos 2\(\alpha\))
or, 2 + 2 cos 2\(\beta\) = 4 + 4 cos 2\(\alpha\)
or, 2 cos 2\(\beta\) =4 + 4 cos 2\(\alpha\) - 2
or,2 cos 2\(\beta\) = 2+ 4 cos 2\(\alpha\)
or, cos 2\(\beta\) = \(\frac {2(1 + 2 cos 2\alpha)}{2}\)
or,cos 2\(\beta\) =1 + 2 cos 2\(\alpha\)
∴ L.H.S. = R.H.S. Proved
Show that:
tan\(\theta\) + 2 tan 2\(\theta\) + 4 tan 4\(\theta\) + 8 cot 8\(\theta\) = cot\(\theta\)
L.H.S.
=tan\(\theta\) + 2 tan 2\(\theta\) + 4 tan 4\(\theta\) + 8 cot 8\(\theta\)
=tan\(\theta\) + 2 tan 2\(\theta\) + 4 tan 4\(\theta\) + \(\frac 8{tan 8\theta}\)
=tan\(\theta\) + 2 tan 2\(\theta\) + 4 tan 4\(\theta\) + \(\frac 8{tan 2⋅4\theta}\)
=tan\(\theta\) + 2 tan 2\(\theta\) + 4 tan 4\(\theta\) + \(\frac 8{\frac {2 tan 4\theta}{1 - tan^24\theta}}\)
=tan\(\theta\) + 2 tan 2\(\theta\) + 4 tan 4\(\theta\) + \(\frac {8 (1 - tan^24\theta)}{2 tan 4\theta}\)
=tan\(\theta\) + 2 tan 2\(\theta\) + \(\frac {4 tan^24\theta + 4 (1 - tan^24\theta)}{tan 4\theta}\)
=tan\(\theta\) + 2 tan 2\(\theta\) + \(\frac {4 tan^24\theta + 4 - 4 tan^24\theta}{tan 4\theta}\)
=tan\(\theta\) + 2 tan 2\(\theta\) + \(\frac 4{tan 4\theta}\)
=tan\(\theta\) + 2 tan 2\(\theta\) + \(\frac 4{tan 2⋅2\theta}\)
=tan\(\theta\) + 2 tan 2\(\theta\) + \(\frac 4{\frac {2 tan 2\theta}{1 - tan^22\theta}}\)
=tan\(\theta\) + 2 tan 2\(\theta\) + \(\frac {2 (1 - tan^2\theta)}{tan 2\theta}\)
= tan\(\theta\) + \(\frac {2 tan^22\theta + 2 - 2 tan^22\theta}{tan 2\theta}\)
= tan\(\theta\) + \(\frac 2{tan 2\theta}\)
= tan\(\theta\) + \(\frac 2{\frac {2 tan\theta}{1 - tan^2\theta}}\)
= tan\(\theta\) + \(\frac {1 - tan^2\theta}{tan\theta}\)
= \(\frac {tan^2\theta + 1 - tan^2\theta}{tan\theta}\)
= \(\frac 1{tan\theta}\)
= cot\(\theta\)
Hence, L.H.S. = R.H.S. proved
Show that:
cos 4x - cos 4y = 8 (cos2x - cos2y) (cos2x - sin2y)
R.H.S.
= 8 (cos2x - cos2y) (cos2x - sin2y)
= 2 (2 cos2x - 2 cos2y) (2 cos2x - 2 sin2y)
= 2 [1 + cos 2x - (2 + cos 2y)] [1 + cos 2x - (1 - cos 2y)]
= 2 [1 + cos 2x - 2 - cos 2y] [1 + cos 2x - 1 + cos 2y]
= 2 (cos 2x - cos 2y) (cos 2x - cos 2y)
= 2 (cos22x - cos22y)
= 2 cos22x - 2 cos22y
= 1 + cos 4x - (1 + cos 4y)
= 1 + cos 4x - 1 - cos 4y
= cos 4x - cos 4y
Hence, L.H.S. =R.H.S. Proved
Show that:
sec x = \(\frac 2{\sqrt {2 + \sqrt {2 + 2 cos 4x}}}\)
R.H.S.
= \(\frac 2{\sqrt {2 + \sqrt {2 + 2 cos 4x}}}\)
= \(\frac 2{\sqrt {2 + \sqrt {2 + 2 cos 2 ⋅2x}}}\)
=\(\frac 2{\sqrt {2 + \sqrt {2 (1 + cos 2 ⋅2x)}}}\)
=\(\frac 2{\sqrt {2 + \sqrt {2 ⋅ 2 cos^22x}}}\)
= \(\frac 2{\sqrt {2 + 2 cos 2x}}\)
=\(\frac 2{\sqrt {2 (1 + cos 2x)}}\)
=\(\frac 2{\sqrt {2 ⋅ 2 cos^2x}}\)
= \(\frac 2{2 cosx}\)
= \(\frac 1{cosx}\)
= sec x
Hence, L.H.S. = R.H.S. Proved
Prove that:
4 sin3\(\alpha\) ⋅ cos 3\(\alpha\) + 4 cos3\(\alpha\) ⋅ sin 3\(\alpha\) = 3 sin 4\(\alpha\)
L.H.S.
=4 sin3\(\alpha\)⋅ cos 3\(\alpha\) + 4 cos3\(\alpha\) ⋅sin 3\(\alpha\)
= (3 sin\(\alpha\) - sin3\(\alpha\))⋅ cos 3\(\alpha\) + (3 cos\(\alpha\) + cos 3\(\alpha\))⋅ sin 3\(\alpha\)
= 3 sin\(\alpha\) cos 3\(\alpha\) - sin 3\(\alpha\) cos 3\(\alpha\) + 3 cos\(\alpha\) sin 3\(\alpha\) + sin 3\(\alpha\) cos 3\(\alpha\)
= 3 sin\(\alpha\) cos 3\(\alpha\) + 3 cos\(\alpha\) sin 3\(\alpha\)
= 3 (sin\(\alpha\) cos 3\(\alpha\) + cos\(\alpha\) sin 3\(\alpha\))
= 3 sin(\(\alpha\) + 3\(\alpha\))
= 3 sin 4\(\alpha\)
Hence, L.H.S. = R.H.S. Proved
Prove that:
cos3\(\alpha\) . cos 3\(\alpha\) + sin3\(\alpha\) . sin 3\(\alpha\) = cos3 2\(\alpha\)
L.H.S.
=cos3\(\alpha\) . cos 3\(\alpha\) + sin3\(\alpha\) . sin 3\(\alpha\)
= cos3\(\alpha\) (4 cos3\(\alpha\) - 3 cos\(\alpha\)) + sin3\(\alpha\) (3 sin\(\alpha\) - 4 sin3\(\alpha\))
= 4 cos6\(\alpha\) - 3 cos4\(\alpha\) + 3 sin4\(\alpha\) - 4 sin6\(\alpha\)
= 4 (cos6\(\alpha\) - sin6\(\alpha\)) - 3 (cos4\(\alpha\) - sin4\(\alpha\))
= 4 {(cos2\(\alpha\))3 - (sin2\(\alpha\))3} - 3{(cos2\(\alpha\))2 - (sin2\(\alpha\))2}
= 4 (cos2\(\alpha\) - sin2\(\alpha\)) (cos4\(\alpha\) + cos2\(\alpha\) sin2\(\alpha\) + sin4\(\alpha\)) - 3 (cos2\(\alpha\) +sin2\(\alpha\))(cos2\(\alpha\) - sin2\(\alpha\))
= 4 cos 2\(\alpha\) {(cos2\(\alpha\))2 + (sin2\(\alpha\))2 + cos2\(\alpha\) sin2\(\alpha\)} - 3 cos 2\(\alpha\)
= cos 2\(\alpha\) [4 {(cos2\(\alpha\) + sin2\(\alpha\))2 - 2 cos2\(\alpha\) sin2\(\alpha\) + cos2\(\alpha\) sin2\(\alpha\)} - 3]
= cos 2\(\alpha\) [4 - 4 cos2\(\alpha\) sin2\(\alpha\) - 3]
= cos 2\(\alpha\) [1 - sin22\(\alpha\)]
= cos 2\(\alpha\)⋅ cos22\(\alpha\)
= cos32\(\alpha\)
∴ L.H.S. = R.H.S. Proved
Prove that:
(2 cos\(\theta\) + 1) (2 cos\(\theta\) - 1) (2 cos 2\(\theta\) - 1) = 2 (cos 4\(\theta\) + 1)
R.H.S.
=2 (cos 4\(\theta\) + 1)
= 2 [cos 2. 2\(\theta\)] + 1
= 2 [2 cos2 2\(\theta\) - 1] + 1
= 4 cos2 2\(\theta\) - 2 + 1
= 4 (2 cos2\(\theta\) - 1)2 - 1
= 4 (4 cos4\(\theta\) - 4 cos2\(\theta\) + 1) - 1
= 16 cos4\(\theta\) - 16 cos2\(\theta\) + 4 - 1
= 16 cos4\(\theta\) - 16 cos2\9\theta\) + 3
= 16 cos4\(\theta\) - 12 cos2\(\theta\) - 4 cos2\(\theta\) + 3
= 4 cos2\(\theta\) (4 cos2\(\theta\) - 3) - 1 (4 cos2\(\theta\) - 3)
= (4 cos2\(\theta\) - 3) (4 cos2\(\theta\) - 1)
=(4 cos2\(\theta\) - 2 - 1) [(2 cos\(\theta\))2 - (1)2]
= [2 (2 cos2\(\theta\) -1) - 1] (2 cos\(\theta\) + 1) (2 cos\(\theta\) - 1)
= (2 cos 2\(\theta\) - 1)(2 cos\(\theta\) + 1) (2 cos\(\theta\) - 1)
=(2 cos\(\theta\) + 1) (2 cos\(\theta\) - 1)(2 cos 2\(\theta\) - 1)
Hence, L.H.S. = R.H.S. Proved
Prove that:
2 (cos6x + sin6x) - 3 (cos4x + sin4x) + 1 = 0
L.H.S.
=2 (cos6x + sin6x) - 3 (cos4x + sin4x) + 1
= 2 [(cos2x)3 + (sin2x)3] - 3 [(cos2x)2 + (sin2x)2] + 1
= 2 (cos2x + sin2x) [(cos2x)2 - cos2x sin2x + (sin2x)2] - 3 [(cos2x + sin2x)2 - 2 cos2x sin2x] + 1
= 2× 1 [(cos2x + sin2x)2 - 2 cos2x sin2x - cos2x sin2x] - 3 [1 - 2 sin2x cos2x] + 1
= 2 (1 - 3 cos2x sin2x) - 3 + 6 cos2x sin2x + 1
= 2 - 6 cos2x sin2x - 2 +6 cos2x sin2x
= 0
Hence, L.H.S. = R.H.S. Proved
Prove that:
\(\frac {sin^2A - sin^2B}{sinA cosA - sinB cosB}\) = tan (A + B)
R.H.S.
= tan (A + B)
= \(\frac {sin (A + B)}{cos (A + B)}\)× \(\frac {sin (A - B)}{sin (A - B)}\)
= \(\frac {(sinA cosB + cosA sinB) (sinA cosB - cosA sinB)}{(cosA cosB - sinA sinB) (sinA cosB - cosA sinB)}\)
= \(\frac {sin^2A cos^2B - cos^2A sin^2B}{sinA cosA cos^2B - sinB cosB cos^2A - sinB cosB sin^2A - cosA sinA sin^2B}\)
= \(\frac {sin^2A (1 - sin^2B) - (1 - sin^2A) sin^2B}{sinA cosA (cos^2B + sin^2B) - sinB cosB (cos^2A + sin^2A)}\)
= \(\frac {sin^2A - sin^2A sin^2B - sin^2B + sin^2A sin^2B}{sinA cosA . 1 - sinB cosB . 1}\)
=\(\frac {sin^2A - sin^2B}{sinA cosA - sinB cosB}\)
Hence, L.H.S. = R.H.S. Proved
Prove that:
cos6\(\theta\) - sin6\(\theta\) = cos 2\(\theta\) (1 - \(\frac 14\) sin2 2\(\theta\))
L.H.S.
=cos6\(\theta\) - sin6\(\theta\)
= (cos2\(\theta\))3- (sin2\(\theta\))3
= (cos2\(\theta\) - sin2\(\theta\)) [(cos2\(\theta\))2 + cos2\(\theta\) sin2\(\theta\) + (sin2\(\theta\))2]
= cos 2\(\theta\) [(cos2\(\theta\))2 + 2 cos2\(\theta\) sin2\(\theta\) + (sin2\(\theta\))2 - cos2\(\theta\) sin2\(\theta\)]
= cos 2\(\theta\) [(cos2\(\theta\) + sin2\(\theta\))2 - \(\frac 14\) × 4 cos2\(\theta\) sin2\(\theta\)]
= cos 2\(\theta\) [(1)2 - \(\frac 14\) (2 sin\(\theta\) cos\(\theta\))2]
= cos 2\(\theta\) [1 - \(\frac 14\) (sin 2\(\theta\))2]
=cos 2\(\theta\) (1 - \(\frac 14\) sin2 2\(\theta\))
Hence, L.H.S. = R.H.S. Proved
© 2019-20 Kullabs. All Rights Reserved.