0%
  • Find (overrightarrow a).(overrightarrow b), when

    (overrightarrow a) = 2(overrightarrow i) + 3(overrightarrow j) and (overrightarrow b) = -2(overrightarrow i) - (overrightarrow j)

    12
    14
    13
    15
  • Find (overrightarrow a). (overrightarrow b), when

    (overrightarrow a) = 2(overrightarrow i) + 3(overrightarrow j) and (overrightarrow b) = 2(overrightarrow i) - (overrightarrow j)

    -1
    2
    1
    3
  • Find (overrightarrow a). (overrightarrow b), when

    (overrightarrow a) = (overrightarrow i) + 2(overrightarrow j) and (overrightarrow b) = 3(overrightarrow j) - 2(overrightarrow i)

    -1
    2
    -2
    1
  • If (overrightarrow a) and (overrightarrow b) are perpendicular to each other, find the value of m where:

    (overrightarrow a) = 3(overrightarrow i) + m(overrightarrow j) and (overrightarrow b) = 3(overrightarrow i) - 3(overrightarrow j)

    4
    3
    5
    2
  • If (overrightarrow a) and (overrightarrow b) are perpendicular to each other, find the value of m:

    (overrightarrow a) = -4(overrightarrow i) + 7(overrightarrow j) and  (overrightarrow b) = 14(overrightarrow i) - 3m(overrightarrow j)

    2
    8
    (-frac{8}{3})
    6
  • If (overrightarrow a) and (overrightarrow b) are two vectors such that |(overrightarrow a)| = 16 and |(overrightarrow b)| = 3 and  (overrightarrow a).(overrightarrow b) = 24 (sqrt 3), find the angles between (overrightarrow a) and (overrightarrow b).

    450
    400
    600
    300
  • If |(overrightarrow a)| = 4, |(overrightarrow b)| = 6 and θ = 600, find the value of (overrightarrow a). (overrightarrow b).

    13
    12
    11
    10
  • The position vectors of points A and B of a line are (egin{pmatrix}1\3\ end{pmatrix}) and (egin{pmatrix}3\5\ end{pmatrix}) respectively.Find the position vector of mid point M of AB.

    (egin{pmatrix}2\4\ end{pmatrix})
    (egin{pmatrix}2\5\ end{pmatrix})
    (egin{pmatrix}5\4\ end{pmatrix})
    (egin{pmatrix}1\4\ end{pmatrix})
  • If the position vectors of the points A and B are 3(overrightarrow i) + 4(overrightarrow j) and 5(overrightarrow i) - 2(overrightarrow j) respectively. Find the position vector of the mid-point M of AB.

     

    2(overrightarrow i) + 3(overrightarrow j)
    4(overrightarrow i) + (overrightarrow j)
    3(overrightarrow i) + (overrightarrow j)
    5(overrightarrow i) + (overrightarrow j)
  • The position vector of P and Q are 2(overrightarrow i) + 7(overrightarrow j) and 4(overrightarrow i) - 3(overrightarrow j). Find the position vector of a point which divides PQ externally in the ratio of 2:3.

    25(overrightarrow j) - (overrightarrow i)
    23(overrightarrow j) - 2(overrightarrow i)
    29(overrightarrow j) - (overrightarrow i)
    27(overrightarrow j) - 2(overrightarrow i)
  • If the points X(-1, -1), Y(5, 1) and Z(2, 6) are the vertices of triangle XYZ, find the position vector of its centriod.

    (egin{pmatrix}2\1\ end{pmatrix})
    (egin{pmatrix}2\2\ end{pmatrix})
    (egin{pmatrix}2\3\ end{pmatrix})
    (egin{pmatrix}1\2\ end{pmatrix})
  • Find the position vector of a point in the x-axis which divides the line joining the points (2, -1) and (8, 2) in the ratio 1:2.

    (egin{pmatrix}2\2\ end{pmatrix})
    (egin{pmatrix}4\2\ end{pmatrix})
    (egin{pmatrix}4\0\ end{pmatrix})
    (egin{pmatrix}2\4\ end{pmatrix})
  • If (overrightarrow a) + (overrightarrow b) + (overrightarrow c) = 0, |(overrightarrow a)| = 4, |(overrightarrow b)| = 10 and (overrightarrow a).(overrightarrow b) = 30, find the value of |(overrightarrow c)|

    15
    12
    14
    13
  • If P(4, 4), Q(2, 2) and R(4, 2), then find (overrightarrow PQ). (overrightarrow QR).

    -2
    -3
    -4
    -5
  • if A(4, 5), b(5, 2) and C(-2, 3) are the vertices of a triangle ABC then find (overrightarrow AB). (overrightarrow AC).

    zero
    eight
    two
    five
  • You scored /15


    Take test again