Videos Related with Signs of Trigonometric Ratios

Note on Signs of Trigonometric Ratios

  • Note
  • Things to remember
  • Videos
  • Exercise
  • Quiz

 Trigonometric Ratios of any angle Trigonometric Ratios of any angle

Any allied angle can be in the form (n × 90° ± \(\theta\)) where n is an integer. We can change the trigonometric ratios of the angle (n × 90° ± \(\theta\)) into the trigonometric ratio of an angle \(\theta\).

1. If n is even, there will be no change in the trigonometric ratios.
i.e. sin (n × 90° ± \(\theta\)) ⇒ sin \(\theta\)
cos (n × 90° ± \(\theta\)) ⇒ cos \(\theta\), etc.

2. If n is odd, then the trigonometric ratios change as follows:
sin (n × 90° ± \(\theta\)) ⇒ cos \(\theta\)
cos (n × 90° ± \(\theta\)) ⇒ sin \(\theta\)
tan (n × 90° ± \(\theta\)) ⇒ cot \(\theta\)
cosec (n × 90° ± \(\theta\)) ⇒sec \(\theta\)
sec (n × 90° ± \(\theta\)) ⇒ cosec \(\theta\)
cot (n × 90° ± \(\theta\)) ⇒ tan \(\theta\)

3. The sign of the trigonometric ratio of the angle (n × 90° ± \(\theta\)) is determined by taking into consideration that in which quadrant that angle (n × 90° ± \(\theta\)) lies.

Ratios of 120°

sin 120° = sin (2 × 90° - 60°) = sin 60° = \(\frac{\sqrt{3}}{2}\)

cos 120° = cos (1 × 90° +30°) = -sin 30° = - \(\frac{1}{2}\)

tan 120° = tan (2 × 90° - 60°) = -tan 60° = - \(\sqrt{3}\)

Ratios of 135°

sin 135° = sin (1 × 90° + 45°) = cos 45 = \(\frac{1}{\sqrt{2}}\)

cos 135° = cos (2 × 90° - 45°) = -cos 45 = -\(\frac{1}{\sqrt{2}}\)

tan 135° = tan (1 × 90° + 45°) = -cot 45 = -1

Ratios of 150°

sin 150° = sin (2 × 90° - 30°) = sin 30° = \(\frac{1}{2}\)

cos 150° = cos (1 × 90° +60°) = -sin 60° = -\(\frac{\sqrt{3}}{2}\)

tan 150° = tan (2 × 90° - 30°) = -tan 30° = -\(\frac{1}{\sqrt{3}}\)

  1. If n is even, there will be no change in the trigonometric ratios.
    i.e. sin(n × 90° ± \(\theta\))⇒ sin \(\theta\)
    cos(n × 90° ± \(\theta\))⇒ cos \(\theta\), etc.
  2. If n is odd, then the trigonometric ratios change as follows:
    sin(n × 90° ± \(\theta\))⇒ cos \(\theta\)
    cos(n × 90° ± \(\theta\))⇒ sin \(\theta\)
    tan(n × 90° ± \(\theta\))⇒ cot \(\theta\)
    cosec(n × 90° ± \(\theta\))⇒sec \(\theta\)
    sec(n × 90° ± \(\theta\))⇒ cosec \(\theta\)
    cot(n × 90° ± \(\theta\))⇒ tan \(\theta\)
  3. The sign of the trigonometric ratio of the angle(n × 90° ± \(\theta\)) is determined by taking into consideration that in which quadrant that angle(n × 90° ± \(\theta\)) lies.
.

Very Short Questions

Soln

 = cos 1470° (\(\therefore\) (-\(\theta\)) = cos\(\theta\))

 = cos(16 x 90° + 30°)

 = cos 30°

 = \(\frac{\sqrt(3)}{2}\)

Soln

 = -tan 570° (tan(-\(\theta\) = -tan \(\theta\))

 = -tan(7×90° - 60°)

 = {-cot60°}

 = cot 60° = \(\frac{1}{\sqrt(3)}\)

0%
  • What is the value of sin 30°?

    (frac{1}{2})
    1
    (frac{1}{sqrt{3}})

  • What is the value of tan 0°?

    1
    (frac{1}{sqrt{2}})
    (frac{1}{sqrt{3}})
  • What is the value of cosec 45°?

    (frac{1}{sqrt{2}})
    1
    (sqrt{2})
    (frac{1}{sqrt{3}})
  • What is the value of cos 90°?

    -1
    (frac{1}{sqrt{3}})

    (sqrt{2})
  • What is the value of sec 30°?

    (frac{1}{sqrt{3}})
    (sqrt{2})
    (frac{2}{sqrt{3}})
    2
  • You scored /5


    Take test again

DISCUSSIONS ABOUT THIS NOTE

You must login to reply

Forum Time Replies Report
Ashok

Tan45


You must login to reply

AshokAshok

SiN135


You must login to reply

Aarohi

sin(-4078)


You must login to reply