Videos Related with Mechanical Advantage, Velocity Ratio and Efficiency

Note on Mechanical Advantage, Velocity Ratio and Efficiency

  • Note
  • Things to remember
  • Videos
  • Exercise
  • Quiz

Mechanical Advantage (MA)

Mechanical advantage is defined as the ratio of resistance overcomes to the effort applied. The simple machine requires force to do work. The resistive force to be overcome is called load and the force applied to overcome the load is called effort.

Velocity Ratio

Velocity ratio of simple machine is the ratio of distance travelled by the effort to the distance travelled by theload in the machine. As velocity ratio or ideal mechanical advantage is a simple ratio of two distances, it also does not have the unit. The friction is not involved in it.

If a machine overcomes a load ‘L’ and the distance travelled by the load is ‘Ld’. Similarly, the effort applied in the machine is ‘E’ and the distance travelled by effort is ‘Ed’, and 'T' is the time taken then


Efficiency

If a machine overcomes a load ‘L’ and the distance travelled by the load is ‘Ld’, the work done by the load is L × Ld. It is also called output work or useful work. Therefore,

Output work = L × Ld

Likewise, the effort applied to overcome the load is E and the distance covered by effort is Ed, the work done by effort is E × Ed. It is also called input work. Therefore,

Input work = E × Ed

The efficiency of a simple machine is defined as the ratio of useful work done by a machine (output work) to the total work put into the machine (input work).




For ideal or perfect machine, work output is equal to the work input. Ideal machines are those imaginary machines which are frictionless. In practice, the work output of a machine is always less than work input due to the effect of friction. If the frictional force in the machine increases the efficiency decreases because machines are frictionless in practice, the efficiency of a machine can never be 100%.

  • Mechanical advantage is defined as the ratio of resistance overcomes to the effort applied.
  • Velocity ratio of simple machine is the ratio of distance travelled by effort to the distance travelled by load in the machine.
  • The efficiency of a simple machine is defined as the ratio of useful work done by machine (output work) to the total work put into the machine (input work).
  • For ideal or perfect machine, work output is equal to the work input but  in practice, the work output of a machine is always less than work input due to the effect of friction.
.

Very Short Questions

Mechanical advantage is defined as the ratio of resistance overcome to the effort applied. Simple machine requires force to do work.

Velocity ratio of simple machine is defined as the ratio of distance travelled by effort to the distance travelled by load in the machine.

The efficiency of a simple machine is defined as the ratio of useful work done by machine (output work) to the total work put into machine (input work).

Ideal machine is defined as frictionless machine in which work output is equal to work input and its efficiency is 100%. There is no ideal machine till date as efficiency is never 100%.

If a machine overcomes a load ‘L’ and the distance travelled by the load is ‘Ld’, the work done by the load is L × Ld. It is also called output work

The effort applied to overcome the load is E and the distance covered by effort is Ed, the work done by effort is E × Ed. It is also called input work.

Solution,

\begin{align*} \text {Effort} \: (E)=50N \\ \text {Mechanical advantage}(MA)=4\\\text {Load}\:(L)=? \\ \text {According to formula,} \\ \text {mecchanical advantage}\:(M.A)\: &=\frac {\text {load}}{\text {effort}}\\ \text {load} &= \frac {\text {mechanical advantage}}{\text {effort}} \\ &= 50\: N \times 4 \\ &= 200 N \\ \end{align*}

\begin{align*} \text {load} (l) = 100\: N \\ \text {effort} (E) = 50\: N \\ \text {load distance} (Ld) =10\: m\\ \text {Effort distance} (Ed) = 5\:m \\ \text {we know} \\ \text {mechanical advantage} =\frac {\text {load}}{\text {effort}} = \frac {100}{50} = 2 \\ \text {velocity ratio} &= \frac{\text {load distance}}{\text {effort distance}} = \frac {10\:m}{2\: m} = 5 \\ \text {efficiency} &= \frac {\text {mechanical advantage}}{\text {velocity ratio}} \times 100\% \\ &= \frac 25 \times 100\% \\ \text {efficiency} &= 40\% \\ \end{align*}

0%
  • Velocity ratio of an screw is calculated by using the formula ______.

    VR = l/h


    Vr = Ld/Ed


    VR =2r/P


    VR = R/r


  • Which one of the following is same in every simple machine?

    Effort
    Load
    Velocity Ratio (VR)
    Mechanical Advantage (MA)
  • Velocity ratio of an inclined plane is calculated by using the formula ______.

    VR = l/h


    VR = h/l


    VR = l/t


    Vr = Ld/Ed


  • Efficiency of the machine can never be _______.

    100%


    1%


    50%


    99%


  • Ideal machine are those imaginary machine which are ______.

    motionless


    gravityless


    motioned


    frictionless


  • The resistive force to be overcome is called______.

    load


    mechanical energy


    mechanical advantage


    effort


  • The value of MA is always less than VR because:

    Effort decreases due to friction.
    Load is equal to effort due to no friction.
    Load increases due to change in speed.
    Some of the effort is increased due to friction
  • You scored /7


    Take test again

DISCUSSIONS ABOUT THIS NOTE

You must login to reply

Forum Time Replies Report


You must login to reply

Maitri

Why friction does not affect velocity ratio?


You must login to reply

sagar

Effect on ma vr and effenicy


You must login to reply

sahil

efficiency of a machine is 60% what does it mean


You must login to reply